in

Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement

  • Knowlton, N. The future of coral reefs. Proc. Natl. Acad. Sci. 98, 5419–5425 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 1979(301), 929–933 (2003).

    Article 
    ADS 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 1979(318), 1737–1742 (2007).

    Article 
    ADS 

    Google Scholar 

  • Eakin, C. M. et al. Monitoring coral reefs from space. Oceanography 23, 118–133 (2010).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).

    Article 

    Google Scholar 

  • Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8, e59596 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cumbo, V., van Oppen, M. & Baird, A. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar. Ecol. Prog. Ser. 587, 117–127 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar Biol. Ecol. 223, 235–255 (1998).

    Article 

    Google Scholar 

  • Gleason, D. F., Edmunds, P. J. & Gates, R. D. Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar. Biol. 148, 503–512 (2006).

    Article 

    Google Scholar 

  • Yusuf, S., Zamani, N. P., Jompa, J. & Junior, M. Z. Larvae of the coral Acropora tenuis (Dana 1846) settle under controlled light intensity. IOP Conf. Ser. Earth Environ. Sci. 253, 012023 (2019).

    Article 

    Google Scholar 

  • Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I. & Simpson, S. D. Coral larvae move toward reef sounds. PLoS One 5, e10660 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).

    Article 

    Google Scholar 

  • Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).

    Article 

    Google Scholar 

  • Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).

    Article 
    ADS 

    Google Scholar 

  • Negri, A., Webster, N., Hill, R. & Heyward, A. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).

    Article 
    ADS 

    Google Scholar 

  • Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erwin, P. M., Song, B. & Szmant, A. M. Settlement behavior of Acropora palmata planulae: effects of biofilm age and crustose coralline algal cover. In Proceedings of 11th International Coral Reef Symposium 24, (2008).

  • Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).

    Article 

    Google Scholar 

  • Petersen, L.-E. et al. Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea. Coral Reefs 40, 381–394 (2021).

    Article 

    Google Scholar 

  • Jorissen, H. et al. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci. Rep. 11, 14610 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a pseudoalteromonas bacterium. PLoS One 6, e19082 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tran, C. & Hadfield, M. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).

    Article 
    ADS 

    Google Scholar 

  • Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).

    Article 

    Google Scholar 

  • Petersen, L.-E., Kellermann, M. Y., Nietzer, S. & Schupp, P. J. Photosensitivity of the bacterial pigment cycloprodigiosin enables settlement in coral larvae—light as an understudied environmental factor. Front. Mar. Sci. 8, 749070 (2021).

    Article 

    Google Scholar 

  • Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).

    Article 

    Google Scholar 

  • Harrington, L., Fabricius, K., Death, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).

    Article 

    Google Scholar 

  • Da-Anoy, J. P., Villanueva, R. D., Cabaitan, P. C. & Conaco, C. Effects of coral extracts on survivorship, swimming behavior, and settlement of Pocillopora damicornis larvae. J. Exp. Mar. Biol. Ecol. 486, 93–97 (2017).

    Article 

    Google Scholar 

  • Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (Scleractinian Coral) larvae. Biol. Bull. 181, 104–122 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).

    Article 

    Google Scholar 

  • Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maru, N. et al. Relative configuration of luminaolide. Tetrahedron Lett. 54, 4385–4387 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nietzer, S., Moeller, M., Kitamura, M. & Schupp, P. J. Coral larvae every day: Leptastrea purpurea, a brooding species that could accelerate coral research. Front. Mar. Sci. 5, 466 (2018).

    Article 

    Google Scholar 

  • Moeller, M., Nietzer, S. & Schupp, P. J. Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci. Rep. 9, 2291 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petersen, L.-E., Kellermann, M. Y. & Schupp, P. J. Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology. In YOUMARES 9 – The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for Young Marine Researcher in Oldenburg, Germany (eds Jungblut, S. et al.) 159–180 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-20389-4_8.

    Chapter 

    Google Scholar 

  • Fiegel, L. J. et al. A detailed visualization of the early development stages of Leptastrea purpurea reveals distinct bio-optical features. Front. Mar. Sci. 10, 1–10 (2023).

    Google Scholar 

  • Strader, M. E., Aglyamova, G. V. & Matz, M. V. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genom. 19, 17 (2018).

    Article 

    Google Scholar 

  • Puisay, A. et al. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. Mar. Environ. Res. 163, 105200 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perez-Tomas, R. & Vinas, M. New insights on the antitumoral properties of prodiginines. Curr. Med. Chem. 17, 2222–2231 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • You, Z. et al. Insights into the anti-infective properties of prodiginines. Appl. Microbiol. Biotechnol. 103, 2873–2887 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kellermann, M. Y., Yoshinaga, M. Y., Valentine, R. C., Wörmer, L. & Valentine, D. L. Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim. Biophys. Acta (BBA) Biomembr. 1858, 2940–2956 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hirose, M., Yamamoto, H. & Nonaka, M. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp.. Coral Reefs 27, 247–254 (2008).

    Article 
    ADS 

    Google Scholar 

  • Bollati, E. et al. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. Elife 11, e73521 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS One 4, e7298 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife 1, e00013 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl. Acad. Sci. 113, 7894–7899 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, J. et al. Bacterial nucleobases synergistically induce larval settlement and metamorphosis in the invasive mussel Mytilopsis sallei. Appl. Environ. Microbiol. 85, e01039 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, H., Rischer, M., Westermann, M. & Beemelmanns, C. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata. MBio 12, e00401 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, C., Fogarty, N. D., Ritson-Williams, R. & Paul, V. J. Interspecific variation in coral settlement and fertilization success in response to hydrogen peroxide exposure. Biol. Bull. 233, 206–218 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boettcher, A. A., Dyer, C., Casey, J. & Targett, N. M. Hydrogen peroxide induced metamorphosis of queen conch, Strombus gigas: tests at the commercial scale. Aquaculture 148, 247–258 (1997).

    Article 
    CAS 

    Google Scholar 

  • Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E. & Castro-Obregón, S. Function of reactive oxygen species during animal development: Passive or active?. Dev. Biol. 320, 1–11 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gauron, C. et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev. Biol. 414, 133–141 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Coastal algal blooms have intensified over the past 20 years

    Integrating humans with AI in structural design