Ethics
No ethics approval was required for this study. Our study was conducted in a state-owned industrial oil palm plantation where we established a cooperation with the estate owner to access the site and collect data. No endangered or protected species were sampled. Research permits were obtained from the Ministry of Research, Technology and Higher Education, and sample collection and sample export permits were obtained from the Ministry of Environment and Forestry of the Republic of Indonesia.
Study area and experimental design
Our study was conducted in a state-owned industrial oil palm plantation (PTPN VI) located in Jambi, Indonesia (1.719° S, 103.398° E, 73 m above sea level). Initial planting of oil palms within the 2,025 ha plantation area started in 1998 and ended in 2002; planting density was 142 palms ha−1, spaced 8 m apart in each row and between rows, and palms were ≥16 years old during our study period of 2016–2020. The study sites have a mean annual temperature of 27.0 ± 0.2 °C and a mean annual precipitation of 2,103 ± 445 mm (2008–2017, Sultan Thaha Airport, Jambi). The management practices in large-scale oil palm plantations typically result in three contrasting management zones: (1) a 2 m radius around the base of the palm that was weeded (four times a year) and raked before fertilizer application, hereafter called the ‘palm circle’; (2) an area occurring every second inter-row, where pruned senesced palm fronds were piled up, hereafter called ‘frond piles’; and (3) the remaining area of the plantation where less weeding (two times a year) and no fertilizer were applied, hereafter called ‘inter-rows’.
Within this oil palm plantation, we established a management experiment in November 2016 with full factorial treatments of two fertilization rates × two weeding practices: conventional fertilization rates at PTPN VI and other large-scale plantations (260 kg N–50 kg P–220 kg K ha−1 yr−1), reduced fertilization rates based on quantified nutrient export by harvest (136 kg N–17 kg P ha−1 yr−1–187 kg K ha−1 yr−1), herbicide and mechanical weeding15. The reduced fertilization treatment was based on quantified nutrient export from fruit harvest, calculated by multiplying the nutrient content of fruit bunches with the long-term yield data of the plantation. Fertilizers were applied yearly in April and October following weeding and raking of the palm circle. The common practice at PTPN VI and other large-scale plantations on acidic Acrisol soils is to apply lime and micronutrients, and these were unchanged in our management experiment. Before each N–P–K fertilizer application, dolomite and micronutrients were applied to the palm circle in all treatment plots using the common rates)52: 426 kg ha−1 yr−1 dolomite and 142 kg Micro-Mag ha−1 yr−1 (containing 0.5% B2O3, 0.5% CuO, 0.25% Fe2O3, 0.15% ZnO, 0.1% MnO and 18% MgO). Herbicide treatment was carried out using glyphosate in the palm circle (1.50 l ha−1 yr−1, split into four applications per year) and in the inter-rows (0.75 l ha−1 yr−1, split into two applications per year). Mechanical weeding was done using a brush cutter in the same management zones and at the same frequency as the herbicide treatment.
The 22 factorial design resulted in four treatment combinations: conventional fertilization with herbicide treatment, reduced fertilization with herbicide treatment, conventional fertilization with mechanical weeding and reduced fertilization with mechanical weeding. The four treatments were randomly assigned on 50 m × 50 m plots replicated in four blocks, totalling 16 plots. The effective measurement area was the inner 30 m × 30 m area within each replicate plot to avoid any possible edge effects. For indicators (below) that were measured within subplots, these subplots were distributed randomly within the inner 30 m × 30 m of a plot. All replicate plots were located on flat terrain and on an Acrisol soil with a sandy clay loam texture.
Ecosystem functions and multifunctionality
Our study included multiple indicators for each of the eight ecosystem functions23, described in details below (Supplementary Tables 1 and 2). All the parameters were expressed at the plot level by taking the means of the subplots (that is, biological parameters) or the area-weighted average of the three management zones per plot (that is, soil parameters). (1) Greenhouse gas (GHG) regulation was indicated by NEP, soil organic C (SOC) and soil GHG fluxes. (2) Erosion prevention was signified by the understory vegetation cover during the four-year measurements. (3) Organic matter decomposition was indicated by leaf litter decomposition and soil animal decomposer activity. (4) Soil fertility was signified by gross N mineralization rate, effective cation exchange capacity (ECEC), base saturation and microbial biomass N. (5) Pollination potential was designated by pan-trapped arthropod abundance and nectar-feeding bird activity. As such, it does not quantify the pollination potential for oil palm, which is mainly pollinated by a single weevil species, but rather as a proxy for a general pollination potential for other co-occurring plants. (6) Water filtration (the capacity to provide clean water) was indicated by leaching losses of the major elements. (7) Plant refugium (the capacity to provide a suitable habitat for plants) as signified by the percentage ground cover of invasive plants to the total ground cover of understory vegetation during the four-year measurements. (8) Biological control (the regulation of herbivores via predation) was indicated by insectivorous bird and bat activities and the soil arthropod predator activity.
All the ecosystem functions were merged into a multifunctionality index using the established average and threshold approaches12. For average multifunctionality, we first averaged the z-standardized values (Statistics) of indicators for each ecosystem function and calculated the mean of the eight ecosystem functions for each plot. For threshold multifunctionality, this was calculated from the number of functions that exceeds a set threshold, which is a percentage of the maximum performance level of each function12; we investigated the range of thresholds from 10% to 90% to have a complete overview. The maximum performance was taken as the average of the three highest values for each indicator per ecosystem function across all plots to reduce effect of potential outliers. For each plot, we counted the number of indicators that exceeded a given threshold for each function and divided by the number of indicators for each function12.
Indicators of GHG regulation
We calculated annual NEP for each plot as: net ecosystem C exchange – harvested fruit biomass C (ref. 16), whereby net ecosystem C exchange = Cout (or heterotrophic respiration) – Cin (or net primary productivity)53. The net primary productivity of oil palms in each plot was the sum of aboveground biomass production (aboveground biomass C + frond litter biomass C input + fruit biomass C) and belowground biomass production. Aboveground biomass production was estimated using allometric equations developed for oil palm plantations in Indonesia54, using the height of palms measured yearly from 2019 to 2020. Annual frond litter biomass input was calculated from the number and dry mass of fronds pruned during harvesting events of an entire year in each plot and was averaged for 2019 and 2020. Aboveground biomass production was converted to C based on C concentrations in wood and leaf litter55. Annual fruit biomass C production (which is also the harvest export) was calculated from the average annual yield in 2019 and 2020 and the measured C concentrations of fruit bunches. Belowground root biomass and litter C production were taken from previous work in our study area55, and it was assumed constant for each plot. Heterotrophic respiration was estimated for each plot as: annual soil CO2 C emission (below) × 0.7 (based on 30% root respiration contribution to soil respiration from a tropical forest in Sulawesi, Indonesia56) + annual frond litter biomass C input × 0.8 (~80% of frond litter is decomposed within a year in this oil palm plantation8). SOC was measured in March 2018 from composite samples collected from two subplots in each of the three management zones per plot down to 50 cm depth. Soil samples were air dried, finely ground and analysed for SOC using a CN analyser (Vario EL Cube, Elementar Analysis Systems). SOC stocks were calculated using the measured bulk density in each management zone, and values for each plot were the area-weighted average of the three management zones (18% for palm circle, 15% for frond piles and 67% for inter-rows)15,22.
From July 2019 to June 2020, we conducted monthly measurements of soil CO2, CH4 and N2O fluxes using vented, static chambers permanently installed in the three management zones within two subplots per plot11,57. Annual soil CO2, CH4 and N2O fluxes were trapezoidal interpolations between measurement periods for the whole year, and values for each plot were the area-weighted average of the three management zones (above).
Indicators of erosion prevention
Diversity and abundance of vascular plants were assessed once a year from 2016 to 2020 before weeding in September–November. In five subplots per plot, we recorded the occurrence of all vascular plant species and estimated the percent cover of the understory vegetation. The percentage cover and plant species richness of each measurement year were expressed in ratio to that of 2016 to account for initial differences among the plots before the start of the experiment. For example, percentage cover in 2017 was:
$$mathrm{Cover}_{2017} = frac{{left( {mathrm{Cover}_{2017} – mathrm{Cover}_{2016}} right)}}{{mathrm{Cover}_{2016}}}$$
The values from five subplots were averaged to represent each plot.
Indicators of organic matter decomposition
Leaf litter decomposition was determined using litter bags (20 cm × 20 cm with 4 mm mesh size) containing 10 g of dry oil palm leaf litter8. Three litter bags per plot were placed on the edge of the frond piles in December 2016. After eight months of incubation in the field, we calculated leaf litter decomposition as the difference between initial litter dry mass and litter dry mass following incubation. Soil animal decomposer activity is described below (Soil arthropods).
Indicators of soil fertility
All these indicators were measured in February–March 2018 in the three management zones within two subplots per plot22. Gross N mineralization rate in the soil was measured in the top 5 cm depth on intact soil cores incubated in situ using the 15N pool dilution technique58. ECEC and base saturation were measured in the top 5 cm depth as this is the depth that reacts fast to changes in management22. The exchangeable cation concentrations (Ca, Mg, K, Na, Al, Fe, Mn) were determined by percolating the soil with 1 mol l−1 of unbuffered NH4Cl, followed by analysis of the percolates using an inductively coupled plasma-atomic emission spectrometer (ICP-AES; iCAP 6300 Duo view ICP Spectrometer, Thermo Fisher Scientific). Base saturation was calculated as the percentage exchangeable bases (Mg, Ca, K and Na) on ECEC. Microbial biomass N was measured from fresh soil samples using the fumigation-extraction method59. The values for each plot were the mean of the two subplots that were the area-weighted average of the three management zones (above)15,22.
Indicators of general pollination potential
Fluorescent yellow pan traps were used to sample aboveground arthropods (to determine pollinator communities60) in November 2016, September 2017 and June 2018. The traps were attached to a platform at the height of the surrounding vegetation within a 2 × 3 grid centred in the inter-rows of each plot in six clusters of three traps, totalling 18 traps per plot. Traps were exposed in the field for 48 h. We stored all trapped arthropods in 70% ethanol and later counted and identified to order and species level. The abundance of trapped arthropods in 2017 and 2018 were calculated as the ratio to the abundance in 2016 to account for initial differences among the plots before the start of the experiment. The activity of nectar-feeding birds is described below (Birds and bats).
Indicators of water filtration
Element leaching losses were determined from analyses of soil-pore water sampled monthly at 1.5 m depth using suction cup lysimeters (P80 ceramic, maximum pore size 1 μm; CeramTec) over the course of one year (2017–2018)15. Lysimeters were installed in the three management zones within two subplots per plot. Dissolved N was analysed using continuous flow injection colorimetry (SEAL Analytical AA3, SEAL Analytical), whereas these other elements were determined using ICP-AES. The values for each plot were the mean of the two subplots that were the area-weighted average of the three management zones15,22.
Indicators of plant refugium
In five subplots per plot, the percentage cover and species richness of invasive understory plant species were assessed once a year from 2016 to 2020 before weeding in September–November. We defined invasive species as those plants non-native to Sumatra61 and among the ten dominant species (excluding oil palm) in the plantation for each year. The percentage cover of invasive understory plant species of each measurement year was expressed in a ratio to that of 2016 to account for initial differences among the plots before the start of the experiment. The values for each plot were represented by the average of five subplots.
Indicators of biological control
The activities of insectivorous birds and bats are described below (Birds and bats). In five subplots per plot, soil invertebrates were collected (Soil arthropods), counted, identified to taxonomic order level and subsequently classified according to their trophic groups that include predators60. The values from five subplots were average to represent each plot.
Biodiversity
Biodiversity was measured by the taxonomic richness of seven multitrophic groups, described in details below (Supplementary Tables 1 and 2).
Understory plant species richness
The method is described above (Indicators of erosion prevention), using the number of species as an indicator (Supplementary Table 2).
Soil microorganism richness
This was determined in May 2017 by co-extracting RNA and DNA from three soil cores (5 cm diameter, 7 cm depth) in five subplots per plot62. While DNA extraction describes the entire microbial community, RNA represents the active community. The v3–v4 region of the 16S rRNA gene was amplified and sequenced with a MiSeq sequencer (Illumina). Taxonomic classification was done by mapping curated sequences against the SILVA small subunit (SSU) 138 non-redundant (NR) database63 with the Basic Local Alignment Search Tool (BLASTN)64.
Soil arthropod order richness
For determination of soil arthropods, we collected soil samples (16 cm × 16 cm, 5 cm depth) in five subplots per plot in October–November 2017. We extracted the animals from the soil using a heat-gradient extractor65, collected them in dimethyleneglycol-water solution (1:1) and stored in 80% ethanol. The extracted animals were counted and identified to taxonomic order level61. They were also assigned to the trophic groups decomposers, herbivores and predators based on the predominant food resources recorded in previous reviews and a local study66,67. Orders with diverse feeding habits were divided into several feeding groups, for example, Coleoptera were divided into mostly predatory families (Staphylinidae, Carabidae), herbivorous families (for example, Curculionidae) and decomposer families (for example, Tenebrionidae). The total number of individuals per taxonomic group in each subplot was multiplied by the group-specific metabolic rate, which were summed to calculate soil animal decomposer activity. The values from five subplots were average to represent each plot.
Aboveground arthropod order and insect family richness
In addition to the fluorescent yellow pan traps described above (Indicators of general pollination potential), sweep net and Malaise trap samplings were conducted in June 2018, which targeted the general flying and understory dwelling arthropod communities. Sweep net sampling was conducted within the understory vegetation along two 10 m long transects per plot, with ten sweeping strokes performed per transect. In each plot, we installed a single Malaise trap between two randomly chosen palms and exposed it for 24 h. Arthropods were counted, identified to taxonomic order level and the insects to taxonomic family level and values from the three methods were summed to represent each plot.
Birds and bats
Birds and bats passing at each replicate plot were sampled in September 2017 using SM2Bat + sound recorders (Wildlife Acoustics) with two microphones (SMX-II and SMX-US) placed at a height of 1.5 m in the middle of each plot68. We assigned the bird vocalization to species with Xeno-Canto69 and the Macaulay library70. Insectivorous bat species richness was computed by dividing them into morphospecies based on the characteristics of their call (call frequency, duration, shape). In addition, we gathered information on proportional diet preferences of the bird species using the EltonTrait database71. We defined birds feeding on invertebrates (potential biocontrol agents) as the species with a diet of at least 80% invertebrates and feeding on nectar (potential pollinators), if the diet included at least 20% of nectar.
Economic indicators
We used six indicators linked to the level and stability of yield and profit: yield, lower fifth quantile of the yield per palm per plot, shortfall probability, management costs, profit and relative gross margin. We assessed fruit yield by weighing the harvested fruit bunches from each palm within the inner 30 m × 30 m area of each plot. The harvest followed the schedule and standard practices of the plantation company: each palm was harvested approximately every ten days and the lower fronds were pruned. For each plot, we calculated the average fruit yield per palm and scaled up to a hectare, considering the planting density of 142 palms per ha. Because the palms in each plot have different fruiting cycles and were harvested continuously, the calculation of an annual yield may lead to misleading differences between treatments. Therefore, we calculated the cumulative yield from the beginning of the experiment to four years (2017–2020), which should account for the inter- and intra-annual variations in fruit production of the palms in the plots and thus allowing for comparison among treatments. As effects of management practices on yield may be delayed46, we also calculated the cumulative yield during two consecutive years (2017–2018 and 2019–2020) and checked for treatment effects on yield and profit indicators separately for these two periods.
We computed risk indicators on the cumulative yield and on the yield between the two periods. We used the lowest fifth quantile of the yield per palm per plot (left side of the distribution) to indicate the production of the palms with lowest performance. Also, we determined the yield shortfall probability (lower partial moment 0th order), defined as the share of palms that fell below a predefined threshold of yield; the thresholds chosen were 630 kg−1 per palm for cumulative yield and 300 kg−1 per palm per year for the two-year yield, which corresponded to 75% of the average yield.
Revenues and costs were calculated as cumulative values during four years of the experiment (2017–2020) using the same prices and costs for all the years. This was because we were interested in assessing the economic consequences of different management treatments, and they might be difficult to interpret when changes in prices and costs between calendar years are included, which are driven by external market powers rather than the field-management practices. For the same reason, we abstained from discounting profits. Given the usually high discount rates applied to the study area, slight differences in harvesting activities between calendar years or months might lead to high systematic differences between the management treatments, which are associated with the variation in work schedule within the plantation rather than the actual difference among management treatments. Revenues were calculated from the yield and the average price of the fruit bunches in 2016 and 201761. Material costs were the sum of the costs of fertilizers, herbicide and gasoline for the brush cutter. Labour costs were calculated from the minimum wage in Jambi and the time (in labour hours) needed for the harvesting, fertilizing and weeding operations, which were recorded in 2017 for each plot. The weeding labour included the labour for raking the palm circle before fertilization, which was equal in all treatments, and the weeding in the palm circle and inter-rows either with herbicide or brush cutter. In addition, we included the time to remove C. hirta, which must be removed mechanically from all plots once a year, calculated from the average weed-removal time in the palm circle and the percentage cover of C. hirta in each plot for each year. We then calculated the profit as the difference between revenues and the total management costs and the relative gross margin as the gross profit proportion of the revenues.
Statistics
To test for differences among management treatments for each ecosystem function and across indicators of biodiversity, the plot-level value of each indicator was first z standardized (z = (actual value − mean value across plots) / standard deviation)4. This prevents the dominance of one or few indicators over the others, and z standardization allows several distinct indicators to best characterize an ecosystem function or biodiversity4. Standardized values were inverted (multiplied by −1) for indicators of which high values signify undesirable effect (that is, NEP, soil N2O and CH4 fluxes, element leaching losses, invasive plant cover, yield shortfall, management costs) for intuitive interpretations. For a specific ecosystem function (Supplementary Figs. 1 and 2) and across indicators of biodiversity (Fig. 2), linear mixed-effects (LME) models were used to assess differences among management treatments (fertilization, weeding and their interaction) as fixed effects with replicate plots and indicators (Supplementary Tables 2 and 3) as random effects. The significance of the fixed effects was evaluated using ANOVA72. The LME model performance was assessed using diagnostic residual plots73. As indicator variables may systematically differ in their responses to management treatments, we also tested the interaction between indicator and treatment (Table 1). For testing the differences among management treatments across ecosystem functions (that is, multifunctionality; Fig. 1), we used for each replicate plot the average of z-standardized indicators of each ecosystem function and ranges of thresholds (that is, number of functions that exceeds a set percentage of the maximum performance of each function12; Supplementary Fig. 3). The LME models had management treatments (fertilization, weeding and their interaction) as fixed effects and replicate plots and ecosystem functions as random effects; the interaction between ecosystem function and treatment were also tested to assess if there were systematic differences in their responses to management treatments (Table 1). As we expected that the type of weeding will influence ground vegetation, we tested for differences in ground cover of understory vegetation, measured from 2016 to 2020, using LME with management treatments as fixed effect and replicate plots and year as random effects. Differences among management treatments (fertilization, weeding and their interaction) in yield and profit indicators, which were cumulative values over four years (Fig. 3) or for two separate periods (2017–2018 and 2019–2020; Supplementary Fig. 4), were assessed using linear model ANOVA (Table 1). For clear visual comparison among management treatments across ecosystem functions, multitrophic groups for biodiversity, and yield and profit indicators, the fifth and 95th percentiles of their z-standardized values were presented in a petal diagram (Fig. 4 and Supplementary Fig. 5). Data were analysed using R (version 4.0.4), using the R packages ‘nlme’ and ‘influence.ME’73.
Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.
Source: Ecology - nature.com