in

Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment

  • Acropora Biological Review Team. Atlantic Acropora Status Review: Report to National Marine Fisheries Service (Acropora Biological Review Team, 2005).

    Google Scholar 

  • Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean Corals. Science 301, 958–960 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jackson, E. J., Donovan, M., Cramer, K. & Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012 306 (International Union for the Conservation of Nature, 2012).

    Google Scholar 

  • Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).

    ADS 

    Google Scholar 

  • Lirman, D. et al. Propagation of the threatened staghorn coral Acropora cervicornis: Methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29, 729–735 (2010).

    ADS 

    Google Scholar 

  • Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J. Nat. Conserv. 24, 17–23 (2015).

    Google Scholar 

  • Young, C., Schopmeyer, S. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).

    Google Scholar 

  • Carne, L., Kaufman, L. & Scavo, K. Measuring success for Caribbean acroporid restoration: key results from ten years of work in southern Belize. In Proc. 13th International Coral Reef Symposium, Honolulu (Abstract No. 27909) (2016).

  • Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaver, E. C. et al. A roadmap to integrating resilience into the practice of coral reef restoration. Glob. Change Biol. 28, 4751–4764 (2022).

    CAS 

    Google Scholar 

  • DeFilippo, L. B. et al. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. Ecol. Appl. 32, e2650 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: A 3-decade study. Mar. Biol. 166, 108 (2019).

    Google Scholar 

  • Montenero, K. A. Florida Keys Integrated Ecosystem Assessment Ecosystem Status Report. https://doi.org/10.25923/F7CE-ST38.

  • Palacio-Castro, A. M., Dennison, C. E., Rosales, S. M. & Baker, A. C. Variation in susceptibility among three Caribbean coral species and their algal symbionts indicates the threatened staghorn coral, Acropora cervicornis, is particularly susceptible to elevated nutrients and heat stress. Coral Reefs 40, 1601–1613 (2021).

    Google Scholar 

  • Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).

    ADS 

    Google Scholar 

  • Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).

    ADS 

    Google Scholar 

  • Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).

    PubMed 

    Google Scholar 

  • Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).

    PubMed 

    Google Scholar 

  • Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems 23, 798–811 (2020).

    CAS 

    Google Scholar 

  • Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).

    Google Scholar 

  • Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Krediet, C. J., Ritchie, K. B., Paul, V. J. & Teplitski, M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).

    Google Scholar 

  • Mao-Jones, J., Ritchie, K. B., Jones, L. E. & Ellner, S. P. How microbial community composition regulates coral disease development. PLoS Biol. 8, e1000345 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).

    Google Scholar 

  • Ritchie, K. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).

    ADS 

    Google Scholar 

  • Klinges, G., Maher, R. L., Thurber, R. L. V. & Muller, E. M. Parasitic ‘Candidatus aquarickettsia rohweri’ is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ. Microbiol. 22, 5341–5355 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, S. D. et al. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida’s Coral Reef. PeerJ 10, e13574 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klinges, J. G., Patel, S. H., Duke, W. C., Muller, E. M. & Vega Thurber, R. L. Phosphate enrichment induces increased dominance of the parasite Aquarickettsia in the coral Acropora cervicornis. FEMS Microbiol. Ecol. 98, 013 (2022).

    Google Scholar 

  • Rosales, S. M. et al. Microbiome differences in disease-resistant vs susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gignoux-Wolfsohn, S., Precht, W., Peters, E., Gintert, B. & Kaufman, L. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. Dis. Aquat. Org. 137, 217–237 (2020).

    Google Scholar 

  • Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguirre, E. G., Million, W. C., Bartels, E., Krediet, C. J. & Kenkel, C. D. Host-specific epibiomes of distinct Acropora cervicornis genotypes persist after field transplantation. Coral Reefs. https://doi.org/10.1007/s00338-022-02218-x (2022).

    Article 

    Google Scholar 

  • Shaver, E. C. et al. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology 98, 830–839 (2017).

    PubMed 

    Google Scholar 

  • Muller, E. M., Bartels, E. & Baums, I. B. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife 7, e35066 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, M. W. et al. Genotypic variation in disease susceptibility among cultured stocks of Elkhorn and Staghorn corals. PeerJ 7, e6751 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sunagawa, S., Woodley, C. M. & Medina, M. Threatened corals provide underexplored microbial habitats. PLoS ONE 5, e9554 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pantos, O. et al. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ. Microbiol. 5, 370–382 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Sheu, S.-Y., Liu, L.-P., Tang, S.-L. & Chen, W.-M. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int. J. Syst. Evol. Microbiol. 66, 5039–5045 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nakagawa, T., Iino, T., Suzuki, K.-I. & Harayama, S. Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Int. J. Syst. Evol. Microbiol. 56, 2639–2645 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Maher, R. L. et al. Coral microbiomes demonstrate flexibility and resilience through a reduction in community diversity following a thermal stress event. Front. Ecol. Evol. 8, 1 (2020).

    ADS 

    Google Scholar 

  • Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDevitt-Irwin, J. M. et al. Responses of coral-associated bacterial communities to local and global stressors. Front. Mar. Sci. 4, 262 (2017).

    Google Scholar 

  • Klinges, J. G. et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 13, 2938–2953 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B 236, 311–324 (1989).

    ADS 

    Google Scholar 

  • Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 8, 682 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Waite, D. W. et al. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 9, 772 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front. Mar. Sci. 8, 776859 (2022).

    Google Scholar 

  • Ricci, F. et al. Beneath the surface: Community assembly and functions of the coral skeleton microbiome. Microbiome 7, 159 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, S.-H. et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7, 3 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, L. et al. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci. Rep. 7, 9320 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: Consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).

    ADS 

    Google Scholar 

  • Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Miura, N. et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar. Biotechnol. 21, 1–8 (2019).

    CAS 

    Google Scholar 

  • Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).

    Google Scholar 

  • Ezzat, L. et al. Thermal stress interacts with surgeonfish feces to increase coral susceptibility to dysbiosis and reduce tissue regeneration. Front. Microbiol. 12, 620458 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiol. Open 6, e00478 (2017).

    Google Scholar 

  • MacKnight, N. J. et al. Microbial dysbiosis reflects disease resistance in diverse coral species. Commun. Biol. 4, 679 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Palacio-Castro, A. M., Rosales, S. M., Dennison, C. E. & Baker, A. C. Microbiome signatures in Acropora cervicornis are associated with genotypic resistance to elevated nutrients and heat stress. Coral Reefs 41, 1389–1403 (2022).

    Google Scholar 

  • Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, e3718 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Parkinson, J. E. et al. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol. Ecol. 27, 1103–1119 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Siebeck, U. E., Logan, D. & Marshall, N. J. CoralWatch—A flexible coral bleaching monitoring tool for you and your group. In Proc. 11th Int. Coral Reef Symp. Ft Lauderdale, Florida, 7–11 July, Vol. 1392, 5 (2008).

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  • Messyasz, A., Maher, R. L., Meiling, S. S. & Thurber, R. V. Nutrient enrichment predominantly affects low diversity microbiomes in a marine trophic symbiosis between algal farming fish and corals. Microorganisms 9, 1873 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

    Google Scholar 

  • Lahti, L. & Shetty, S. Microbiome R Package.

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package (2019).

  • Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 0.0.1 (2017).

  • Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking the long view: The Deep Time Project

    Aviva Intveld named 2023 Gates Cambridge Scholar