in

Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues

  • Des Marais, D. J. The biogeochemistry of hypersaline microbial mats. Adv. Microb. Ecol. 14, 251–274 (1995).

    Article 

    Google Scholar 

  • Belnap, J., Welter, J., Grimm, N., Barger, N. & Ludwig, J. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86, 298–307 (2005).

    Article 

    Google Scholar 

  • Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives locale δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).

    Article 

    Google Scholar 

  • Allwood, A., Walter, M., Burch, I. & Kamber, B. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res. 158, 198–227 (2007).

    Article 
    ADS 

    Google Scholar 

  • Al-Najjar, M. et al. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Front. Microbiol. 5, 406 (2014).

    Article 

    Google Scholar 

  • Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial island patches in the Atacama Desert. J. Geophys. Res. Biogeosciences 112, G04S15 (2007).

    Article 

    Google Scholar 

  • Allwood, A., Walter, M., Kamber, B., Marshall, C. & Burch, I. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).

    Article 
    ADS 

    Google Scholar 

  • Meslier, V. et al. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781 (2018).

    Article 

    Google Scholar 

  • Finstad, K. et al. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front. Microbiol. 8, 1435 (2017).

    Article 

    Google Scholar 

  • Wilhelm, M. et al. Constraints on the metabolic activity of microorganisms in Atacama surface soils inferred from refractory biomarkers: Implications for Martian habitability and biomarker detection. Astrobiology 18, 955–966 (2018).

  • Dillon, J. et al. Spatial and temporal variability in a stratified microbial mat community. FEMS Microbiol. Ecol. 68, 46–58 (2009).

    Article 

    Google Scholar 

  • Rillig, M. & Antonovics, J. Microbial biospherics: the experimental study of ecosystem function and evolution. Proc. Natl Acad. Sci. USA 116, 11093–11098 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sephton, M. & Carter, J. The chances of detecting life on Mars. Planet. Space Sci. 112, 15–22 (2015).

    Article 
    ADS 

    Google Scholar 

  • Naveh, Z., & Lieberman, A. S. Landscape Ecology: Theory and Application (Springer, 2013).

  • Mony, C., Vandenkoornhuyse, P., Bohannan, B. J. M., Peay, K. & Leibold, M. A. A landscape of opportunities for microbial ecology research. Front. Microbiol. 11, 2964 (2020).

    Article 

    Google Scholar 

  • Summons, R. et al. Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    Article 
    ADS 

    Google Scholar 

  • Farmer, J. & Des Marais, D. J. Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26,977–26,995 (1999).

    Article 
    ADS 

    Google Scholar 

  • Stoker et al. We should search for extant life on Mars in this decade. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.36ef5e33

  • Jakowsky, B. et al. Mars, the nearest habitable world—a comprehensive program for future Mars exploration. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.e5222017

  • Hinman, N. et al. Surface morphologies in a Mars analog Ca sulfate salar, High Andes, Northern Chile. Front. Astron. Space Sci. 8, 797591 (2022).

    Article 

    Google Scholar 

  • Cabrol, N. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2, 19 (2014).

    Article 

    Google Scholar 

  • Phillips, M.S. et al. Planetary mapping using Deep Learning: a method to evaluate feature identification confidence applied to habitats in Mars-analogue terrain. Astrobiology 23 (2023).

  • Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).

    Article 

    Google Scholar 

  • Lynch, K. et al. Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: an analog study for Martian paleolake basins. J. Geophys. Res. Planets 120, 599–623 (2015).

    Article 
    ADS 

    Google Scholar 

  • El-Maarry, M., Pommerol, A. & Thomas, N. Analysis of polygonal cracking patterns in chloride-bearing terrains of Mars: indicators of ancient playa settings. J. Geophys. Res. 113, 2263–2278 (2013).

    Article 

    Google Scholar 

  • Onstott, T. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).

    Article 
    ADS 

    Google Scholar 

  • Davila, A. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).

    Article 
    ADS 

    Google Scholar 

  • Osterloo, M. M. et al. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).

    Article 
    ADS 

    Google Scholar 

  • Flauhaut, J., Martinot, M., Bishop, J.L., Davies, G.R. & Potts, N.J. Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus 282, 152–173 (2017).

  • Bosak, T., Moore, K., Gong, J. & Grotzinger, J. Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nat. Rev. Earth Environ. 2, 490–506 (2021).

    Article 
    ADS 

    Google Scholar 

  • Balci, N. et al. Biotic and abiotic imprints on Mg-rich stromatolites: lessons from Lake Salda, SW Turkey. Geomicrobiol. J. 37, 401–425 (2020).

    Article 

    Google Scholar 

  • Williams, A., Buck, B., Soukup, D. & Merkler, D. Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195, 99–109 (2013).

    Article 
    ADS 

    Google Scholar 

  • Warren, J. Evaporites: a Geological Compendium 2nd edn (Springer, 2016).

  • Wierzchos, J. et al. Microbial colonization of Ca sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9, 44–60 (2010).

    Article 

    Google Scholar 

  • Robinson, C. K. et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17, 299–315 (2013).

    Article 

    Google Scholar 

  • Jørgesen, B. & Des Marais, D. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol. Oceanogr. 33, 99–113 (1988).

    Article 
    ADS 

    Google Scholar 

  • Szynkiewicz, A., Moore, C., Glamoclija, M., Bustos, D. & Pratt, L. Origin of coarsely crystalline gypsum domes in a saline playa environment at the White Sands National Monument, New Mexico. J. Geophys. Res. 115, F02021 (2010).

    Article 
    ADS 

    Google Scholar 

  • Walker, J., Spear, J. & Pace, N. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1013 (2005).

    Article 
    ADS 

    Google Scholar 

  • Rasuk, M. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).

    Article 

    Google Scholar 

  • Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Preprint at arXiv https://arxiv.org/abs/1412.7062 (2014).

  • Chan, M. et al. Exploring, mapping and data management integration of habitable environments in astrobiology. Frontiers in Microbiology 10, 147 (2019).

  • Farmer, J. in From Habitability to Life on Mars 1–12 (Elsevier, 2018).

  • Hays, L. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).

    Article 
    ADS 

    Google Scholar 

  • Fairen, A. et al. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821 (2010).

    Article 
    ADS 

    Google Scholar 

  • Green, J. et al. Call for a framework for reporting evidence for life beyond Earth. Nature 598, 575–579 (2021).

    Article 
    ADS 

    Google Scholar 

  • He, K., Xiangyu, Z., Shaoqing, R. & Jian, S. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In 2015 IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).

  • Adams, J. B. & Filice, A. L. Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967).

  • National Academies of Sciences, Engineering & Medicine. Origins, Worlds and Life: a Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022).

  • Rodríguez Albornoz, C. Geology and Controls on Microbiota of the Salar de Pajonales (7.209.000–7.226.500 N.–510.000–530.000 E), Antofagasta, Northern Chile. Master’s thesis, Univ. Católica del Norte Antofagasta (2018).

  • Naranjo, J., Villa, V. & Venegas, C. Geology of the Salar de Pajonales Area and Cerro Moño. Antofagasta and Atacama Regions (Geological Maps of Chile Basic Geology Series No. 153 (1: 100.000), National Geological Service, Geology and Mining Subsection, 2013).

  • Schween, J., Hoffmeister, D. & Löhnert, U. Filling the observational gap in the Atacama Desert with a new network of climate stations. Glob. Planet. Chang. 184, 103034 (2020).

  • Gutiérrez, F. & Cooper, A. Surface morphology of gypsum karst. Treatise Geomorphol. 6, 425–437 (2013).

    Article 

    Google Scholar 

  • Bishop, J. L. et al. Spectral properties of Ca-sulfates: gypsum, bassanite and anhydrite. Am. Mineral. 99, 2105–2115 (2014).

    Article 
    ADS 

    Google Scholar 

  • Green, A., Berman, M., Switzer, P. & Craig, M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988).

    Article 
    ADS 

    Google Scholar 

  • Davis, W., Pater, I. & McKay, C. P. Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet. Space Sci. 58, 616–622 (2010).

    Article 
    ADS 

    Google Scholar 

  • McKay, C. P. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observation including the El Niño of 1997–1998. Astrobiology 3, 393–406 (2003).

    Article 
    ADS 

    Google Scholar 

  • Warren-Rhodes, K., Rhodes, K., Liu, S., Zhou, P. & McKay, C. Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J. Geophys. Res. 112, G01016 (2007).

    Article 
    ADS 

    Google Scholar 

  • Warren-Rhodes, K. et al. Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat and light. J. Geophys. Res. 118, 1451–1460 (2013).

    Article 

    Google Scholar 

  • Lange, O., Kilian, E. & Ziegler, H. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue–green algae as phycobionts. Oecologia 71, 104–110 (1986).

    Article 
    ADS 

    Google Scholar 

  • Lange, O. L., Meyer, A. & Büdel, B. Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with a Microcoleus sociatus isolated from a desert soil crust. Funct. Ecol. 8, 52–57 (1994).

    Article 

    Google Scholar 

  • Palmer, R. & Friedmann, E. I. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 18, 111–118 (1990).

    Article 

    Google Scholar 

  • Potts, M. & Friedmann, E. Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267–271 (1981).

    Article 

    Google Scholar 

  • Tracy, C. et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).

    Article 

    Google Scholar 

  • Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 51, 568–581 (2011).

    Article 

    Google Scholar 

  • Rull, F. et al. ExoMars Raman Laser Spectrometer for ExoMars. Proc. SPIE 8152, 81520J (2011).

  • Kontoyannis, C. G., Orkoula, M. & Koutsoukos, P. Quantitative analysis of sulphated calcium carbonates using Raman spectrometry and X-ray powder diffraction. Analyst 122, 33–38 (1997).

  • Lopez-Reyes, G. et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer Instrument. Eur. J. Mineral. 25, 721–733 (2013).

  • Hunt, G. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513 (1977).

    Article 
    ADS 

    Google Scholar 

  • Bishop, J. L. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds Bishop, J. L. et al.) 68–101 (Cambridge Univ. Press, 2019).

  • Morris, R. V. et al. Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94, 2760–2778 (1989).

    Article 
    ADS 

    Google Scholar 

  • Bishop, J. L., Pieters, C. M. & Burns, R. G. Reflectance and Mössbauer spectroscopy of ferrihydrite–montmorillonite assemblages as Mars soil analog materials. Geochim. Cosmochim. Acta 57, 4583–4595 (1993).

    Article 
    ADS 

    Google Scholar 

  • Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article 

    Google Scholar 

  • Underwood, A. J., Chapman, M. G. & Connell, S. D. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol. 250, 97–115 (2000).

    Article 

    Google Scholar 

  • Turner, M. G. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).

    Article 

    Google Scholar 

  • Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).

  • Wiens, J. A., Chr, N., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).

    Article 

    Google Scholar 

  • Urban, D., O’Neill, R. & Shugart, H. Landscape ecology. BioScience 37, 119–127 (1987).

    Article 

    Google Scholar 

  • Underwood, A. J. et al. Experiments in Ecology: their Logical Design and Interpretation using Analysis of Variance (Cambridge Univ. Press, 1997).

  • Quinn, G. P., & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

  • Neyman, J. & Pearson, E. S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1933).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zar, J. H. Biostatistical Analysis 5th edn (Prentice-Hall/Pearson, 2010).

  • Ripley, B. D. Journal of the Royal Statistical Society Series B (Methodological) 39, 172-212 (1977).

  • Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).

    Article 

    Google Scholar 

  • Krebs, C. Ecological Methodology 2nd edn (Addison-Wesley, 1999).

  • Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert. J. Geophys. Res. 112, G04S15 (2007).

    Article 

    Google Scholar 

  • Belnap, J., Phillips, S., Witwicki, D. & Miller, M. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid Environ. 72, 1257–1264 (2008).

    Article 
    ADS 

    Google Scholar 

  • Warren-Rhodes, K. et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006).

    Article 

    Google Scholar 

  • Yingst, R. et al. Is a linear or a walkabout protocol more efficient when using a rover to choose biologically relevant samples in a small region of interest? Astrobiology 20, 327–347 (2020).

    Article 
    ADS 

    Google Scholar 

  • Shen, J., Wyness, A., Claire, M. & Zerkle, A. Spatial variability of microbial communities and salt distributions across a latitudinal gradient in the Atacama Desert. Microb. Ecol. 82, 442–458 (2021).

    Article 

    Google Scholar 

  • Barrett, J. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).

    Article 

    Google Scholar 

  • Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).

    Article 
    ADS 

    Google Scholar 

  • Chiodini, R. et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PloS ONE 10, e0134382 (2015).

    Article 

    Google Scholar 

  • Rivas, L. A. et al. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal. Chem. 80, 7970–7979 (2008).

    Article 

    Google Scholar 

  • Sanchez-Garcia, L. et al. Microbial biomarker transition in high-altitude sinter mounds from El Tatio (Chile) through different stages of hydrothermal activity. Front. Microbiol. 9, 3350 (2019).

    Article 

    Google Scholar 

  • Parro, V. et al. SOLID3, a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11, 15–28 (2011).

    Article 
    ADS 

    Google Scholar 

  • Parro, V. et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11, 969–996 (2011).

    Article 
    ADS 

    Google Scholar 

  • Blanco, Y., Moreno-Paz, M., Aguirre, J. & Parro, V. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) Ch. 159 (Springer, 2017).

  • Moreno-Paz, M. et al. Detecting nonvolatile life and nonlife-derived organics in a carbonaceous chrondrite analogue with a new multiplex immunoassay and its relevance for planetary exploration. Astrobiology 18, 1041–1056 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ekwealor, J. & Fisher, K. Life under quartz: hypolithic mosses in the Mojave Desert. PLoS ONE 15, e0235928 (2020).

    Article 

    Google Scholar 

  • Williams, A., Buck, B. & Beyene, M. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. 76, 1685–1695 (2012).

    Article 

    Google Scholar 

  • Archer, S. et al. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 40, 997–1006 (2017).

    Article 

    Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J. Sediment. Res. 71, 649–656 (2001).

    Article 
    ADS 

    Google Scholar 

  • Fierer, N. & Jackson, R. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article 
    ADS 

    Google Scholar 

  • Caruso, T. et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406–1413 (2011).

    Article 

    Google Scholar 

  • Valverde et al. Prokaryotic community structure and metabolisms in shallow subsurface of Atacama Desert playas and alluvial fans after heavy rains: repairing and preparing for next dry period. Front. Microbiol. 10, 1641 (2019).

    Article 

    Google Scholar 

  • Sun, H. Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2, 693–701 (2013).

  • Maier, S. et al. Photoautotrophic organisms control microbial abundance, diversity and physiology in different types of biological soil crusts. ISME J. 12, 1032–1046 (2018).

    Article 

    Google Scholar 

  • Roldan, M., Ascaso, C. & Weirzchos, J. Fluorescent fingerprint of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl. Environ. Microbiol. 80, 2998–3006 (2014).

    Article 
    ADS 

    Google Scholar 

  • Cockell, C. et al. 0.25 Ga salt deposits preserve geological signatures of habitable conditions and ancient lipids. Astrobiology 20, 864–877 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ripley, B. D. Spatial Statistics (Wiley, 1981).

  • Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (eds) Handbook of Spatial Statistics (CRC Press, 2010).

  • Dixon, P. M. in Encyclopedia of Environmetrics, 1796-1803 (Wiley, 2006).

  • Baddeley, A., Rubak, E. & Turner, R. Spatial point patterns: methodology and applications with R. J. Stat. Softw. 75, 2 (2016).

  • Wood, S. Generalized Additive Models: an Introduction with R Ch 3–5 (Chapman and Hall/CRC, 2006).

  • Simon, R. & Wood, N. GAMS in practice: mgcv. In Generalized Additive Models: an Introduction with R 2nd ed (eds Blitzstein, J., Faraway, J., Tanner, M. & Zidek, J.) Ch 7 (Chapman and Hall/CRC, 2017).

  • Fang, X. & Chan, K.-S. Generalized Additive Models with Spatio-temporal Data (Univ. Iowa); https://stat.uiowa.edu/sites/stat.uiowa.edu/files/techrep/tr396.pdf

  • LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar 

  • Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article 

    Google Scholar 

  • Shelhamer, E., Long J. & Darrell, T. Fully convolutional networks for semantic segmentation. Preprint at arXiv https://arxiv.org/abs/1605.06211 (2016).

  • Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Preprint at arXiv https://arxiv.org/abs/1506.02142 (2016).

  • Bishop, J. L. & Murad, E. in Volcano–Ice Interactions on Earth and Mars (eds Smellie, J. L. & Chapman, M. G.) 357–370 (Special Publication No. 202, Geological Society, 2002).

  • Buzgar, N., Buzatu, A. & Sanislav, I. V. The Raman study of certain sulfates. An. Stiintificie Univ. Al. I. Cuza IASI Geol. 55, 5–23 (2009).

  • Jehlicka, J., Edwards, H. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295 (2013).


  • Source: Ecology - nature.com

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    3 Questions: Antje Danielson on energy education and its role in climate action