in

Subsistence of early anatomically modern humans in Europe as evidenced in the Protoaurignacian occupations of Fumane Cave, Italy

  • Nigst, P. R. et al. Early modern human settlement of Europe north of the alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. U.S.A. 111, 14394–14399 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pederzani, S. et al. Subarctic climate for the earliest Homo sapiens in Europe. Sci. Adv. 7, 1–11 (2021).

    Article 

    Google Scholar 

  • Shao, Y. et al. Human-existence probability of the Aurignacian techno-complex under extreme climate conditions. Quat. Sci. Rev. 263, 106995 (2021).

    Article 

    Google Scholar 

  • Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, 1 (2022).

    Article 

    Google Scholar 

  • Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benazzi, S. et al. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793–796 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Vidal-Cordasco, M., Ocio, D., Hickler, T. & Marín-Arroyo, A. B. Publisher Correction: Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01917-6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, R. E. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. J. Hum. Evol. 69, 91–109 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hublin, J. J. The modern human colonization of western Eurasia: When and where? Quat. Sci. Rev. 118, 194–210 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hublin, J. J. The earliest modern human colonization of Europe. Proc. Natl. Acad. Sci. U.S.A. 109, 13471–13472 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marín-Arroyo, A. B. & Sanz-Royo, A. What Neanderthals and AMH ate: Reassessment of the subsistence across the Middle-Upper Palaeolithic transition in the Vasco-Cantabrian region of SW Europe. J. Quat. Sci. 37, 320–334 (2022).

    Article 

    Google Scholar 

  • Semal, P. et al. New data on the late Neandertals: Direct dating of the Belgian Spy fossils. Am. J. Phys. Anthropol. 138, 421–428 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. 113, 11162–11167 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zilhão, J. Chronostratigraphy of the Middle-to-Upper Paleolithic transition in the Iberian Peninsula. Pyrenae Rev. Prehist. i Antig. la Mediter. Occident. 37, 7–84 (2006).

    Google Scholar 

  • Vanhaeren, M. & d’Errico, F. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J. Archaeol. Sci. 33, 1105–1128 (2006).

    Article 

    Google Scholar 

  • Higham, T. et al. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Broglio, A. et al. L’art aurignacien dans la décoration de la Grotte de Fumane. Anthropologie 113, 753–761 (2009).

    Article 

    Google Scholar 

  • Conard, N. J. Palaeolithic ivory sculptures from southwestern Germany and the origins of figurative art. Nature 426, 830–832 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature 459, 248–252 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bourrillon, R. et al. A new Aurignacian engraving from Abri Blanchard, France: Implications for understanding Aurignacian graphic expression in Western and Central Europe. Quat. Int. 491, 46–64 (2018).

    Article 

    Google Scholar 

  • Tejero, J. M. & Grimaldi, S. Assessing bone and antler exploitation at Riparo Mochi (Balzi Rossi, Italy): Implications for the characterization of the Aurignacian in South-western Europe. J. Archaeol. Sci. 61, 59–77 (2015).

    Article 

    Google Scholar 

  • Tejero, J. M. Spanish aurignacian projectile points: An example of the First European Paleolithic hunting weapons in osseous materials. In Osseous Projectile Weaponry Towards an Understanding of Pleistocene Cultural Variability (ed. Langley, M. C.) 55–70 (Springer, 2017).

    Google Scholar 

  • Kitagawa, K. & Conard, N. J. Split-based points from the Swabian Jura highlight Aurignacian regional signatures. PLoS ONE 15(11), e0239865 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Floss, H., Hoyer, C. T., Heckel, C. & Tartar, É. The Aurignacian in Southern Burgundy. Palethnologie 7, 1–22 (2015).

    Google Scholar 

  • Tartar, É. Origin and development of Aurignacian Osseous Technology in Western Europe: A review of current knowledge. Palethnologie 7, 1–20 (2015).

    Google Scholar 

  • Bar-Yosef, O. Neanderthals and modern humans: A different interpretation. In When Neanderthals and Modern Humans Met (ed. Conard, N. J.) 467–482 (Kerns Verlag, 2006).

    Google Scholar 

  • Flas, D. Les pointes foliacées et les changements techniques autour de la transitiondu Paléolithiquemoyen au supérieur dans leNord-Ouest de l’Europe. In (eds Toussaint, M. & Di Modica, K. S. P.) 261–276 (ERAUL 128, 2011).

  • Nigst, P. R. The Early Upper Palaeolithic of the Middle Danube Region—Human Evolution (Leiden University, 2012).

    Google Scholar 

  • Tsanova, T. Les débuts du Paléolithique supérieur dans l’Est des Balkans. Réflexion à partir de l’étude taphonomique et techno-économique des ensembles lithiques des sites de Bacho Kiro (couche 11), Temnata (couches VI et 4) et Kozarnika (niveau VII) (2008).

  • Bosch, M. D. et al. New chronology for Ksâr ’Akil (Lebanon) supports Levantine route of modern human dispersal into Europe. Proc. Natl. Acad. Sci. U.S.A. 112, 7683–7688 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, W. et al. Aurignacian dynamics in Southeastern Europe based on spatial analysis, sediment geochemistry, raw materials, lithic analysis, and use-wear from Românești-Dumbrăvița. Sci. Rep. 12, 14152 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conard, N. J. The timing of cultural innovations and the dispersal of modern humans in Europe. Terra Nostra 6, 82–94 (2002).

    Google Scholar 

  • Davies, W. Re-evaluating the Aurignacian as an Expression of Modern Human Mobility and Dispersal. (eds. Mellars P, Boyle K, Bar-Yosef O, S. C.) (2001).

  • Mellars, P. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439, 931–935 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mellars, P. Archeology and the dispersal of modern humans in Europe: Deconstructing the ‘Aurignacian’. Evol. Anthropol. 15, 167–182 (2006).

    Article 

    Google Scholar 

  • Szmidt, C. C., Normand, C., Burr, G. S., Hodgins, G. W. L. & LaMotta, S. AMS 14C dating the Protoaurignacian/Early Aurignacian of Isturitz, France. Implications for Neanderthal-modern human interaction and the timing of technical and cultural innovations in Europe. J. Archaeol. Sci. 37, 758–768 (2010).

    Article 

    Google Scholar 

  • Conard, N. J. & Bolus, M. Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: New results and new challenges. J. Hum. Evol. 44, 331–371 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Douka, K., Grimaldi, S., Boschian, G., del Lucchese, A. & Higham, T. F. G. A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy). J. Hum. Evol. 62, 286–299 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Davies, W. & Hedges, R. E. M. Dating a type site: Fitting Szeleta Cave into its regional chronometric context. Praehistoria 9–10, 35–45 (2009).

    Google Scholar 

  • Davies, W., White, D., Lewis, M. & Stringer, C. Evaluating the transitional mosaic: Frameworks of change from Neanderthals to Homo sapiens in eastern Europe. Quat. Sci. Rev. 118, 211–242 (2015).

    Article 
    ADS 

    Google Scholar 

  • Marín-Arroyo, A. B. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13, 1–20 (2018).

    Google Scholar 

  • Barshay-Szmidt, C., Normand, C., Flas, D. & Soulier, M. C. Radiocarbon dating the Aurignacian sequence at Isturitz (France): Implications for the timing and development of the Protoaurignacian and Early Aurignacian in western Europe. J. Archaeol. Sci. Rep. 17, 809–838 (2018).

    Google Scholar 

  • Wood, R. et al. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using radiocarbon dating to assess site taphonomy. Quat. Int. 474, 56–70 (2018).

    Article 

    Google Scholar 

  • Chu, W. The danube corridor hypothesis and the carpathian basin: Geological, environmental and archaeological approaches to characterizing aurignacian dynamics. J. World Prehist. 31, 117–178 (2018).

    Article 

    Google Scholar 

  • Falcucci, A., Conard, N. J. & Peresani, M. Breaking through the aquitaine frame: A re-evaluation on the significance of regional variants during the Aurignacian as seen from a key record in southern Europe. J. Anthropol. Sci. 98, 99–140 (2020).

    PubMed 

    Google Scholar 

  • Banks, W. E., d’Errico, F. & Zilhão, J. Human-climate interaction during the Early Upper Paleolithic: Testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Badino, F. et al. An overview of Alpine and Mediterranean palaeogeography, terrestrial ecosystems and climate history during MIS 3 with focus on the Middle to Upper Palaeolithic transition. Quat. Int. 551, 7–28 (2020).

    Article 

    Google Scholar 

  • Bataille, G. & Conard, N. J. Blade and bladelet production at Hohle Fels Cave, AH IV in the Swabian Jura and its importance for characterizing the technological variability of the Aurignacian in Central Europe. PLoS ONE 13, 1–47 (2018).

    Article 

    Google Scholar 

  • Higham, T., Wood, R., Moreau, L., Conard, N. & Ramsey, C. B. Comments on ‘Human-climate interaction during the early Upper Paleolithic: Testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian’ by Banks et al.. J. Hum. Evol. 65, 806–809 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Teyssandier, N. & Zilhão, J. On the entity and antiquity of the Aurignacian at Willendorf (Austria): Implications for modern human emergence in Europe. J. Paleolit. Archaeol. 1, 107–138 (2018).

    Article 

    Google Scholar 

  • Discamps, E., Jaubert, J. & Bachellerie, F. Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quat. Sci. Rev. 30, 2755–2775 (2011).

    Article 
    ADS 

    Google Scholar 

  • Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–980 (2006).

    Article 

    Google Scholar 

  • Starkovich, B. M. Intensification of small game resources at Klissoura Cave 1 (Peloponnese, Greece) from the Middle Paleolithic to Mesolithic. Quat. Int. 264, 17–31 (2012).

    Article 

    Google Scholar 

  • Stiner, M. Prey choice, site occupation intensity & economic diversity in the Middle–early Upper Palaeolithic at the Üçağizli Caves. Turkey. Before Farm. 3, 1–20 (2009).

    Google Scholar 

  • Yravedra Saínz de los Terreros, J., Gómez-Castanedo, A., Aramendi-Picado, J., Montes-Barquín, R. & Sanguino-González, J. Neanderthal and Homo sapiens subsistence strategies in the Cantabrian region of northern Spain. Archaeol. Anthropol. Sci. 8, 779–803 (2016).

    Article 

    Google Scholar 

  • Bertacchi, A., Starkovich, B. M. & Conard, N. J. The Zooarchaeology of Sirgenstein Cave: A Middle and Upper Paleolithic site in the Swabian Jura, SW Germany. J. Paleolit. Archaeol. 4, 7 (2021).

    Article 

    Google Scholar 

  • Boscato, P. & Crezzini, J. Middle-Upper Palaeolithic transition in Southern Italy: Uluzzian macromammals from Grotta del Cavallo (Apulia). Quat. Int. 252, 90–98 (2012).

    Article 

    Google Scholar 

  • Grayson, D. K. & Delpech, F. The large mammals of Roc de Combe (Lot, France): The Châtelperronian and Aurignacian assemblages. J. Anthropol. Archaeol. 27, 338–362 (2008).

    Article 

    Google Scholar 

  • Morin, E. et al. New evidence of broader diets for archaic Homo populations in the northwestern Mediterranean. Sci. Adv. 5, 1–12 (2019).

    Article 

    Google Scholar 

  • Münzel, S. & Conard, N. J. Change and continuity in subsistence during the Middle and Upper Palaeolithic in the Ach Valley of Swabia (South-west Germany). Int. J. Osteoarchaeol. 14, 225–243 (2004).

    Article 

    Google Scholar 

  • Rendu, W. et al. Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of Human Populations to their environment. Sci. Rep. 9, 1–11 (2019).

    Article 
    ADS 

    Google Scholar 

  • Romandini, M. et al. Macromammal and bird assemblages across the late Middle to Upper Palaeolithic transition in Italy: An extended zooarchaeological review. Quat. Int. 551, 188–223 (2020).

    Article 

    Google Scholar 

  • Starkovich, B. M. Paleolithic subsistence strategies and changes in site use at Klissoura Cave 1 (Peloponnese, Greece). J. Hum. Evol. 111, 63–84 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Peresani, M. Inspecting human evolution from a cave Late Neanderthals and early sapiens at Grotta di Fumane: Present state and outlook. J. Anthropol. Sci. 100, 71–107 (2022).

    PubMed 

    Google Scholar 

  • Jarvis, A. et al. Hole-Filled Seamless SRTM Data V4. https://srtm.csi.cgiar.org (International Centre for Tropical Agriculture (CIAT), 2008).

  • Delpiano, D., Heasley, K. & Peresani, M. Assessing Neanderthal land use and lithic raw material management in discoid technology. J. Anthropol. Sci. 96, 89–110 (2018).

    PubMed 

    Google Scholar 

  • Marcazzan, D., Ligouis, B., Duches, R. & Conard, N. J. Middle and Upper Paleolithic occupations of Fumane Cave (Italy): A geoarchaeological investigation of the anthropogenic features. J. Antropol. Sci. 100, 1–26 (2022).

    Google Scholar 

  • Douka, K. et al. On the chronology of the Uluzzian. J. Hum. Evol. 68, 1–13 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Peresani, M., Cristiani, E. & Romandini, M. The Uluzzian technology of Grotta di Fumane and its implication for reconstructing cultural dynamics in the Middle-Upper Palaeolithic transition of Western Eurasia. J. Hum. Evol. 91, 36–56 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Peresani, M., Bertola, S., Delpiano, D., Benazzi, S. & Romandini, M. The Uluzzian in the north of Italy: Insights around the new evidence at Riparo Broion. Archaeol. Anthropol. Sci. 11, 3503–3536 (2019).

    Article 

    Google Scholar 

  • Aleo, A., Duches, R., Falcucci, A., Rots, V. & Peresani, M. Scraping hide in the early Upper Paleolithic: Insights into the life and function of the Protoaurignacian endscrapers at Fumane Cave. Archaeol. Anthropol. Sci. 13, 1 (2021).

    Article 

    Google Scholar 

  • Falcucci, A., Conard, N. J. & Peresani, M. A critical assessment of the Protoaurignacian lithic technology at Fumane Cave and its implications for the definition of the earliest Aurignacian. PLoS ONE 12, 1–43 (2017).

    Article 

    Google Scholar 

  • Falcucci, A. & Peresani, M. A pre-Heinrich Event 3 assemblage at Fumane Cave and its contribution for understanding the beginning of the Gravettian in Italy. Quartär 66, 135–154 (2019).

    Google Scholar 

  • Higham, T. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look. Antiquity 85, 235–249 (2011).

    Article 

    Google Scholar 

  • Higham, T. et al. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quat. Sci. Rev. 28, 1257–1267 (2009).

    Article 
    ADS 

    Google Scholar 

  • Cassoli, P. F. & Tagliacozzo, A. Considerazioni paleontologiche, paleoecologiche e archeologiche sui micromammiferi e gli uccelli dei livelli del Pleistocene Superiore del Riparo di Fumane (Vr) (Scavi 1988–91). Bollettino del Museo Civico di Storia Naturale di Verona 18, 349–445 (1994).

    Google Scholar 

  • Broglio, A., De Stefani, M., Tagliacozzo, A., Gurioli, F. & Facciolo, A. Aurignacian dwelling structures, hunting strategies and seasonality in the Fumane Cave (Lessini Mountains). In Kostenki and the Early Upper Paleolithic of Eurasia: General Trends, Local Developments (eds Vasilev, S. A. et al.) 263–268 (Nestor-Historia, 2006).

    Google Scholar 

  • Bertola, S. et al. Le territoire des chasseurs aurignaciens dans les Préalpes de la Vénétie: l’exemple de la Grotte de Fumane. In Le Concept de Territoires dans le Paléolithique Supérieur Européen (eds Djindjian, F. et al.) (BAR Intemational Series, 2009).

    Google Scholar 

  • Jéquier, C., Livraghi, A., Romandini, M. & Peresani, M. Same but different: 20,000 years of bone retouchers from northern Italy. A diachronologic approach from neanderthals to anatomically modern humans. In The Origins of Bone Tool Technologies (eds Hutson, J. M. et al.) 269–285 (Verlag des Römisch-Germanischen Zentralmuseums, 2018).

    Google Scholar 

  • Marín-Arroyo, A. B. A comparative study of analytic techniques for skeletal part profile interpretation at El Mirón Cave (Cantabria, Spain). Archaeofauna 18, 79–98 (2009).

    Google Scholar 

  • Romandini, M. Analisi archeozoologica, tafonomica, paleontologica e spaziale dei livelli Uluzziani e tardo-Musteriani della Grotta di Fumane (VR). Variazioni e continuità strategico-comportamentali umane in Italia Nord Occidentale: i casi di Grotta del Col della Stria. Dip. di Biol. ed Evol. PhD thesis 505 (2012).

  • Marean, C. W., Abe, Y., Nilssen, P. J. & Stone, E. C. Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: A review and a new image-analysis GIS approach. Am. Antiq. 66, 333–348 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stiner, M. C. The use of mortality patterns in archaeological studies of hominid predatory adaptations. J. Anthropol. Archaeol. 9, 305–351 (1990).

    Article 

    Google Scholar 

  • Marín-Arroyo, A. B. & Morales, M. R. G. Comportamiento económico de los últimos cazadores-recolectores y primeras evidencias de domesticación en el occidente de asturias. La cueva de mazaculos II. Trab. Prehist. 66, 47–74 (2009).

    Article 

    Google Scholar 

  • Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).

    Book 

    Google Scholar 

  • Marín-Arroyo, A. B. The use of optimal foraging theory to estimate Late Glacial site catchment areas from a central place: The case of eastern Cantabria, Spain. J. Anthropol. Archaeol. 28, 27–36 (2009).

    Article 

    Google Scholar 

  • Azorit, C. Guía para la determinación de la edad del ciervo ibérico (Cervus elaphus hispanicus) a través de su dentición: Revisión metodológica y técnicas de elección. An. la Real Acad. Ciencias Vet. Andalucía Orient. 24, 235–264 (2011).

    Google Scholar 

  • Mariezkurrena, K. Contribución al conocimiento del desarrollo de la dentición y el esqueleto poscraneal de Cervus elaphus. Munibe 35, 149–202 (1983).

    Google Scholar 

  • Tomé, C. & Vigne, J. D. Roe deer (Capreolus capreolus) age at death estimates: New methods and modern reference data for tooth eruption and wear, and for epiphyseal fusion. Archaeofauna 12, 157–173 (2003).

    Google Scholar 

  • Couturier, M. A. J. Le bouquetin des Alpes: Capra aegagrus ibex ibex L. (Impr. Allier, 1962).

    Google Scholar 

  • Habermehl, K.-H. Die Altersbeurteilung beim weiblichen Steinwild (Capra ibex ibex L.) anhand der Skelettentwicklung. Anat. Histol. Embryol. J. Vet. Med. Ser. C 21, 193–198 (1992).

    Article 
    CAS 

    Google Scholar 

  • Pflieger, R. H. P. Le chamois, son identification et sa vie (Grand Gibier, 1982).

    Google Scholar 

  • Binford, L. R. Nunamiut Etnoarchaeology (Academic Press, 1978).

    Google Scholar 

  • Metcalfe, D. & Jones, K. T. A reconsideration of animal body-part utility indices. Am. Antiq. 53, 486–504 (1988).

    Article 

    Google Scholar 

  • Morin, E. & Ready, E. Foraging goals and transport decisions in western Europe during the Paleolithic and Early Holocene. In Zooarchaeology and Modern Human Origins. Vertebrate Paleobiology and Paleoanthropology (eds Clark, J. L. & Speth, J. D.) 227–269 (Springer, 2013).

    Google Scholar 

  • Lam, Y. M., Chen, X. & Pearson, O. M. Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. Am. Antiq. 64, 343–362 (1999).

    Article 

    Google Scholar 

  • Morin, E. Fat composition and Nunamiut decision-making: A new look at the marrow and bone grease indices. J. Archaeol. Sci. 34, 69–82 (2007).

    Article 

    Google Scholar 

  • Marín-Arroyo, A. B. & Ocio, D. Disentangling faunal skeletal profiles. A new probabilistic framework. Hist. Biol. 30, 720–729 (2018).

    Article 

    Google Scholar 

  • Rogers, A. R. On the value of soft bones in faunal analysis. J. Archaeol. Sci. 27, 635–639 (2000).

    Article 

    Google Scholar 

  • Rogers, A. R. Analysis of bone counts by maximum likelihood. J. Archaeol. Sci. 27, 111–125 (2000).

    Article 

    Google Scholar 

  • Marín-Arroyo, A. B., Ocio, D., Vidal-Cordasco, M. & Vettese, D. BaSkePro: Bayesian Model to Archaeological Faunal Skeletal Profiles. R package version 0.1.0. https://CRAN.R-project.org/package=BaSkePro (2022).

  • Binford, L. R. Bones Ancient Men and Modern Myths (Bones (Elsevier, 1981).

    Google Scholar 

  • Galán, A. B. & Domínguez-Rodrigo, M. An experimental study of the anatomical distribution of cut marks created by filleting and disarticulation on long bone ends. Archaeometry 55, 1132–1149 (2013).

    Article 

    Google Scholar 

  • Nilssen, P. J. An Actualistic Butchery Study in South Africa and Its Implications for Reconstructing Hominid Strategies of Carcass Acquisition and Butchery in the Upper Pleistocene and Plio-Pleistocene (University of Cape Town, 2000).

    Google Scholar 

  • Capaldo, S. D. & Blumenschine, R. J. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. Am. Antiq. 59, 724–748 (1994).

    Article 

    Google Scholar 

  • Pickering, T. R. & Egeland, C. P. Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. J. Archaeol. Sci. 33, 459–469 (2006).

    Article 

    Google Scholar 

  • Bunn, H. T. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature 291, 574–577 (1981).

    Article 
    ADS 

    Google Scholar 

  • Villa, P. & Mahieu, E. Breakage patterns of human long bones. J. Hum. Evol. 21, 27–48 (1991).

    Article 

    Google Scholar 

  • Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).

    Article 
    ADS 

    Google Scholar 

  • Galán, A. B., Rodríguez, M., de Juana, S. & Domínguez-Rodrigo, M. A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J. Archaeol. Sci. 36, 776–784 (2009).

    Article 

    Google Scholar 

  • Pickering, T. R. et al. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. J. Archaeol. Sci. 40, 1295–1309 (2013).

    Article 

    Google Scholar 

  • Vettese, D. et al. Towards an understanding of hominin marrow extraction strategies: A proposal for a percussion mark terminology. Archaeol. Anthropol. Sci. 12, 8 (2020).

    Article 

    Google Scholar 

  • Vettese, D. et al. A way to break bones? The weight of intuitiveness. PLoS ONE 16, 0259136 (2021).

    Article 

    Google Scholar 

  • Coil, R., Yezzi-Woodley, K. & Tappen, M. Comparisons of impact flakes derived from hyena and hammerstone long bone breakage. J. Archaeol. Sci. 120, 105167 (2020).

    Article 

    Google Scholar 

  • Stiner, M. C., Kuhn, S. L., Weiner, S. & Bar-Yosef, O. Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).

    Article 

    Google Scholar 

  • Mallye, J. B. et al. The Mousterian bone retouchers of Noisetier Cave: Experimentation and identification of marks. J. Archaeol. Sci. 39, 1131–1142 (2012).

    Article 

    Google Scholar 

  • Blumenschine, R. J. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J. Hum. Evol. 29, 21–51 (1995).

    Article 

    Google Scholar 

  • Domínguez-Rodrigo, M. & Piqueras, A. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J. Archaeol. Sci. 30, 1385–1391 (2003).

    Article 

    Google Scholar 

  • Domínguez-Rodrigo, M. & Barba, R. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. J. Hum. Evol. 50, 170–194 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Behrensmeyer, A. K. Taphonomic and écologie information from bone weathering. Paleobiology 4, 150–162 (1978).

    Article 

    Google Scholar 

  • Fisher, J. W. Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).

    Article 

    Google Scholar 

  • Lyman, R. L. Vertebrate Taphonomy (Cambridge University Press, 1994).

    Book 

    Google Scholar 

  • Shipman, P. Life History of a Fossil: An Introduction to Taphonomy and Paleoecology (Harvard University Press, 1981).

    Google Scholar 

  • Marín-Arroyo, A. B. et al. Archaeological implications of human-derived manganese coatings: A study of blackened bones in El Mirón Cave, Cantabrian Spain. J. Archaeol. Sci. 35, 801–813 (2008).

    Article 

    Google Scholar 

  • Marín-Arroyo, A. B., Landete-Ruiz, M. D., Seva-Román, R. & Lewis, M. D. Manganese coating of the Tabun faunal assemblage: Implications for modern human behaviour in the Levantine Middle Palaeolithic. Quat. Int. 330, 10–18 (2014).

    Article 

    Google Scholar 

  • Blasco, R., Rosell, J., Fernández Peris, J., Cáceres, I. & Vergès, J. M. A new element of trampling: An experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J. Archaeol. Sci. 35, 1605–1618 (2008).

    Article 

    Google Scholar 

  • Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 36, 2643–2654 (2009).

    Article 

    Google Scholar 

  • Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ dynamic global vegetation model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).

    Article 

    Google Scholar 

  • Zampieri, D. Segmentation and linkage of the Lessini Mountains normal faults, Southern Alps, Italy. Tectonophysics 319, 19–31 (2000).

    Article 
    ADS 

    Google Scholar 

  • Castiglioni, G. B. et al. The loess deposits in the Lessini plateau. In The Loess in Northern and Central Italy: A Loess Basin Between the Alps and the Mediterranean Region (ed. Cremaschi, M.) 41–59 (Centro di Studio per la Stratigrafia e Petrografia delle Alpi Centrali, 1990).

    Google Scholar 

  • Sauro, U. Il paesaggio degli alti Lessini. Studio Geomofologico (Museo Civico di Storia Naturale, 1973).

    Google Scholar 

  • Castiglioni, G. B. et al. Geomorphological Map of Po Plain, Scale 1:250,000 (1997).

  • Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sediment. Geol. 301, 150–171 (2014).

    Article 
    ADS 

    Google Scholar 

  • Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range Management Principles and Practices 3rd edn. (Prentice-Hall, 1998).

    Google Scholar 

  • Imhoff, M. L. et al. Global patterns in human consumption of net primary production. Nature 429, 870–873 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article 
    ADS 

    Google Scholar 

  • Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article 
    ADS 

    Google Scholar 

  • Githumbi, E. N. et al. Pollen, people and place: Multidisciplinary perspectives on ecosystem change at Amboseli, Kenya. Front. Earth Sci. 5, 113 (2018).

    Article 
    ADS 

    Google Scholar 

  • Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).

    Article 

    Google Scholar 

  • Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci. Data 6, 1–16 (2019).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).

    Article 

    Google Scholar 

  • Adam, M., Weitzel, N. & Rehfeld, K. Identifying global-scale patterns of vegetation change during the last deglaciation from paleoclimate networks. Paleoceanogr. Paleoclimatol. 36, 1 (2021).

    Article 

    Google Scholar 

  • Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim. Past 16, 1493–1508 (2020).

    Article 

    Google Scholar 

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zobler, L. A World Soil File for Global Climate Modelling. NASA Technical Memorandum 87802 (1986).

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar 

  • Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar 

  • Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article 
    ADS 

    Google Scholar 

  • Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).

    Article 

    Google Scholar 

  • Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article 
    ADS 

    Google Scholar 

  • Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Romandini, M., Nannini, N., Tagliacozzo, A. & Peresani, M. The ungulate assemblage from layer A9 at Grotta di Fumane, Italy: A zooarchaeological contribution to the reconstruction of Neanderthal ecology. Quat. Int. 337, 11–27 (2014).

    Article 

    Google Scholar 

  • Tagliacozzo, A., Romandini, M., Fiore, I., Gala, M. & Peresani, M. 2013. Animal exploitation strategies during the Uluzzian at Grotta di Fumane (Verona, Italy). In Zooarchaeology and Modern Human Origins. Vertebrate Paleobiology and Paleoanthropology (eds Clark, J. & Speth, J.) 129–150 (Springer, 2013).

    Google Scholar 

  • Terlato, G., Livraghi, A., Romandini, M. & Peresani, M. Large bovids on the Neanderthal menu: Exploitation of Bison priscus and Bos primigenius in northeastern Italy. J. Archaeol. Sci. Rep. 25, 129–143 (2019).

    Google Scholar 

  • Peresani, M., Fiore, I., Gala, M., Romandini, M. & Tagliacozzo, A. Late Neandertals and the intentional removal of feathers as evidenced from bird bone taphonomy at Fumane Cave 44 ky B.P., Italy. Proc. Natl. Acad. Sci. U.S.A. 108, 3888–3893 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fiore, I. et al. From feathers to food: Reconstructing the complete exploitation of avifaunal resources by Neanderthals at Fumane cave, unit A9. Quat. Int. 421, 134–153 (2016).

    Article 

    Google Scholar 

  • Romandini, M. et al. Neanderthal scraping and manual handling of raptors wing bones: Evidence from Fumane Cave. Experimental activities and comparison. Quat. Int. 421, 154–172 (2016).

    Article 

    Google Scholar 

  • López-García, J. M., dalla Valle, C., Cremaschi, M. & Peresani, M. Reconstruction of the Neanderthal and Modern Human landscape and climate from the Fumane cave sequence (Verona, Italy) using small-mammal assemblages. Quat. Sci. Rev. 128, 1–13 (2015).

    Article 
    ADS 

    Google Scholar 

  • Maspero, A. Ricostruzione del paesaggio vegetale attorno alla grotta di Fumane durante il Paleolitico. Annu. Stor. della Valpolicella 18, 19–26 (1998).

    Google Scholar 

  • Malerba, G. & Giacobini, G. Analisi delle tracce di macellazione in un sito Paleolitico. L’esempio del Riparo di Fumane (Valpolicella, Verona). In Atti del: “I° Convegno Nazionale di Archeozoologia”, Rovigo 5–7 marzo 1993 97–108 (1995).

  • Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl. Acad. Sci. 113, 10908–10913 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, R. J. Community ecology: How green is the arctic Tundra? Curr. Biol. 18, R256–R258 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holt, B. et al. The Middle-Upper Paleolithic transition in Northwest Italy: New evidence from Riparo Bombrini (Balzi Rossi, Liguria, Italy). Quat. Int. 508, 142–152 (2019).

    Article 

    Google Scholar 

  • Pothier Bouchard, G., Riel-Salvatore, J., Negrino, F. & Buckley, M. Archaeozoological, taphonomic and ZooMS insights into the Protoaurignacian faunal record from Riparo Bombrini. Quat. Int. https://doi.org/10.1016/j.quaint.2020.01.007 (2020).

    Article 

    Google Scholar 

  • Riel-Salvatore, J. & Negrino, F. Proto-Aurignacian Lithic technology, mobility, and human niche construction: A case study from Riparo Bombrini, Italy. In Lithic Technological Organization and Paleoenvironmental Change, Studies in Human Ecology and Adaptation (eds Robinson, E. & Sellet, F.) (Springer, 2018).

    Google Scholar 

  • Riel-Salvatore, J. & Negrino, F. Human adaptations to climatic change in Liguria across the Middle-Upper Paleolithic transition. J. Quat. Sci. 33, 313–322 (2018).

    Article 

    Google Scholar 

  • Grimaldi, S., Porraz, G. & Santaniello, F. Raw material procurement and land use in the northern Mediterranean Arc: Insight from the first Proto-Aurignacian of Riparo Mochi (Balzi Rossi, Italy). Quartar 61, 113–127 (2014).

    Google Scholar 

  • Alaique, F. Risultati preliminari dell’analisi dei resti faunistici rinvenuti nei livelli del Paleolitico superiore di Riparo Mochi (Balzi Rossi): Scavi 1995–1996. In Atti Del 2°Convegno Nazionale Di Archeozoologia (Asti, 1997) (eds Malerba, G. et al.) 125–130 (Abaco Edizioni, 2000).

    Google Scholar 

  • Staubwasser, M. et al. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl. Acad. Sci. 115, 9116–9121 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Antje Danielson on energy education and its role in climate action

    Nanotube sensors are capable of detecting and distinguishing gibberellin plant hormones