Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015). 2015 61.
Google Scholar
Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B Biol. Sci. 273, 2659–2665 (2006).
Google Scholar
McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
Google Scholar
Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018). 2018 27.
Google Scholar
Reidsma, P., Tekelenburg, T., Van Den Berg, M. & Alkemade, R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric. Ecosyst. Environ. 114, 86–102 (2006).
Google Scholar
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 291–288 (2016).
Google Scholar
Meier, E. S., Lüscher, G. & Knop, E. Disentangling direct and indirect drivers of farmland biodiversity at landscape scale. Ecol. Lett. 00, 1–13 (2022).
Martínez-Núñez, C. et al. Temporal and spatial heterogeneity of semi-natural habitat, but not crop diversity, is correlated with landscape pollinator richness. J. Appl. Ecol. 59, 1258–1267 (2022).
Google Scholar
Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).
Google Scholar
Sparrow, A. D. A heterogeneity of heterogeneities. Trends Ecol. Evol. 14, 422–423 (1999).
Google Scholar
Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Spatiotemporal land-use diversification for biodiversity. Trends Ecol. Evol. 37, 734–735 (2022).
Google Scholar
Quintero, C., Morales, C. L. & Aizen, M. A. Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers. Conserv. 19, 257–274 (2010).
Google Scholar
Allen, D. C. et al. Long-term effects of land-use change on bird communities depend on spatial scale and land-use type. Ecosphere 10, e02952 (2019).
Google Scholar
MacArthur, R. H. Patterns of species diversity. Biol. Rev. 40, 510–533 (1965).
Google Scholar
Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2018).
Google Scholar
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Jarzyna, M. A., Quintero, I. & Jetz, W. Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecol. Lett. 24, 196–207 (2021).
Google Scholar
Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 1–7 (2013). 2013 31.
Google Scholar
McCain, C. M. Elevational gradients in diversity of small mammals. Ecology 86, 366–372 (2005).
Google Scholar
Rahbek, C. The elevational gradient of species richness: a uniform pattern? Ecography 18, 200–205 (1995).
Google Scholar
Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).
Google Scholar
Cusens, J., Wright, S. D., McBride, P. D. & Gillman, L. N. What is the form of the productivity–animal-species-richness relationship? A critical review and meta-analysis. Ecology 93, 2241–2252 (2012).
Google Scholar
Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).
Google Scholar
Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).
Google Scholar
Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 1–11 (2020). 2020 111.
Google Scholar
Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. U. S. A. 119, e2117297119 (2022).
Google Scholar
Hughes, E. C. et al. Global biogeographic patterns of avian morphological diversity. Ecol. Lett. 25, 598–610 (2022).
Google Scholar
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Google Scholar
Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 1–11 (2019).
Google Scholar
Santillán, V. et al. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia 189, 863–873 (2018).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).
Google Scholar
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes, and spatial scales. Ecol. Lett. 17, 866–880 (2014).
Google Scholar
Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).
Google Scholar
Grinnell, J. The Niche-relationships of the California Thrasher. Auk 34, 427–433 (1917).
Google Scholar
Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).
Google Scholar
Kraft, N. J. B. et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
Tarifa, R. et al. Agricultural intensification erodes taxonomic and functional diversity in Mediterranean olive groves by filtering out rare species. J. Appl. Ecol. 58, 2266–2276 (2021).
Google Scholar
Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).
Google Scholar
Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).
Google Scholar
Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).
Google Scholar
García-Navas, V. et al. Partitioning beta diversity to untangle mechanisms underlying the assembly of bird communities in Mediterranean olive groves. Divers. Distrib. 28, 112–127 (2022).
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).
Google Scholar
Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).
Google Scholar
Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 1–10 (2021).
Google Scholar
Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science. 316, 847–851 (2007).
Google Scholar
Meyfroidt, P. & Lambin, E. F. Global forest transition: prospects for an end to deforestation. 36, 343–371 https://doi.org/10.1146/annurev-environ-090710-143732 (2011).
McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).
Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Google Scholar
Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).
Google Scholar
Dray, S. & Dufour, A. B. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
Google Scholar
Gruson, H. & Grenié, M. Fundiversity: Easy computation of functional diversity Indices. https://doi.org/10.5281/ZENODO.7360757 (2022).
Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).
Google Scholar
Kohli, B. A. & Jarzyna, M. A. Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes. Glob. Ecol. Biogeogr. 30, 1139–1152 (2021).
Google Scholar
Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020). 2020, Vol. 12, Page 1044.
Google Scholar
Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Google Scholar
Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 1–9 (2022). 2022 91.
Google Scholar
Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Google Scholar
Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
Wickham, H. ggplot2. (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Breheny, P. & Burchett, W. Visualization of regression models using Visreg. R. J. 9, 56–71 (2017).
Google Scholar
Met Office. Cartopy: a cartographic python library with matplotlib support. (2013).
Martinez-Nuñez, C., Martinez-Prentice, R. & García-Navas, V. Dataset: Environmental as well as bird taxonomic and functional richness data for ca. 18,000 grid cells in the world. Figshare https://doi.org/10.6084/m9.figshare.21747257.v1 (2023).
Source: Ecology - nature.com