Dove, A. D. & Pierce, S. J. Whale Sharks: Biology, Ecology, and Conservation (CRC Press, 2021).
Friedman, M. et al. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327, 990–993 (2010).
Google Scholar
Friedman, M. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc. R. Soc. B https://doi.org/10.1098/rspb.2011.1381 (2011).
Sanderson, S. L. & Wassersug, R. in The Skull: Functional and Evolutionary Mechanisms Vol. 3 (eds Hanken, J. & Hall, B. K.) 37–112 (Univ. Chicago Press, 1993).
Rowat, D. & Brooks, K. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).
Google Scholar
Pimiento, C., Cantalapiedra, J. L., Shimada, K., Field, D. J. & Smaers, J. B. Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588–599 (2019).
Google Scholar
Stiefel, K. M. Evolutionary trends in large pelagic filter-feeders. Hist. Biol. 33, 1477–1488 (2021).
Google Scholar
Goldbogen, J. & Madsen, P. The largest of August Krogh animals: physiology and biomechanics of the blue whale revisited. Comp. Biochem. Physiol. A 254, 110894 (2021).
Google Scholar
Jørgensen, C. B. Quantitative aspects of filter feeding in invertebrates. Biol. Rev. 30, 391–453 (1955).
Google Scholar
Radke, R. J. & Kahl, U. Effects of a filter‐feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto‐and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshw. Biol. 47, 2337–2344 (2002).
Google Scholar
Schiemer, F. in Perspectives in Tropical Limnology (eds Schiemer, F. & Boland, K.T.) 65–76 (SPB Academic Publishing, 1996).
Carey, N. & Goldbogen, J. A. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax. J. Exp. Biol. 220, 2717–2725 (2017).
Google Scholar
Haines, G. E. & Sanderson, S. L. Integration of swimming kinematics and ram suspension feeding in a model American paddlefish, Polyodon spathula. J. Exp. Biol. 220, 4535–4547 (2017).
Google Scholar
Paig‐Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).
Google Scholar
Jacobsen, I. P. & Bennett, M. B. A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS ONE 8, e71348 (2013).
Google Scholar
Ellis, J. Occurrence of pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) in the North Sea. J. Fish Biol. 71, 933–937 (2007).
Google Scholar
Werth, A. J. & Potvin, J. Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106 (2016).
Google Scholar
Orton, L. S. & Brodie, P. F. Engulfing mechanics of fin whales. Can. J. Zool. 65, 2898–2907 (1987).
Google Scholar
Shadwick, R. E., Goldbogen, J. A., Potvin, J., Pyenson, N. D. & Vogl, A. W. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J. Exp. Biol. 216, 2691–2701 (2013).
Google Scholar
Shadwick, R. E., Goldbogen, J. A., Pyenson, N. D. & Whale, J. C. Structure and function in the lunge feeding apparatus: mechanical properties of the fin whale mandible. Anat. Rec. 300, 1953–1962 (2017).
Google Scholar
Werth, A. J., Ito, H. & Ueda, K. Multiaxial movements at the minke whale temporomandibular joint. J. Morphol. 281, 402–412 (2020).
Google Scholar
Lambertsen, R., Ulrich, N. & Straley, J. Frontomandibular stay of Balaenopteridae: a mechanism for momentum recapture during feeding. J. Mammal. 76, 877–899 (1995).
Google Scholar
Pyenson, N. D. et al. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature 485, 498–501 (2012).
Google Scholar
Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).
Google Scholar
Bierlich, K. C. et al. A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones. Mar. Ecol. Prog. Ser. 673, 193–210 (2021).
Google Scholar
Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017).
Google Scholar
Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Food Agric. Organ. 3, 379–487 (1981).
Mackintosh, A. & Wheeler, J. Southern blue and fin whales. Discover. Rep. 1, 257–540 (1929).
Smith, F. A. & Lyons, S. K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Phil. Trans. R. Soc. B 366, 2364–2378 (2011).
Google Scholar
Gearty, W., McClain, C. R. & Payne, J. L. Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl Acad. Sci. USA 115, 4194–4199 (2018).
Google Scholar
Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).
Google Scholar
Goldbogen, J. A. Physiological constraints on marine mammal body size. Proc. Natl Acad. Sci. USA 115, 3995–3997 (2018).
Google Scholar
Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).
Google Scholar
Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by super-groups of rorqual whales. Anim. Behav. 182, 251–266 (2021).
Google Scholar
Goldbogen, J. A. et al. Scaling of lunge‐feeding performance in rorqual whales: mass‐specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226 (2012).
Google Scholar
Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).
Google Scholar
Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. https://doi.org/10.1242/jeb.224196 (2020).
McNab, B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q. Rev. Biol. 63, 25–54 (1988).
Google Scholar
Boyd, I. in Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 247–277 (Blackwell Science Ltd, 2002).
Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
Google Scholar
West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
Google Scholar
Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate? Mar. Mamm. Sci. 15, 1228–1245 (1999).
Google Scholar
Lockyer, C. Review of baleen whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn 6, 27–50 (1984).
Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).
Google Scholar
Frazer, J. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).
Google Scholar
Zhou, M. & Dorland, R. D. Aggregation and vertical migration behavior of Euphausia superba. Deep Sea Res. II 51, 2119–2137 (2004).
Google Scholar
Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).
Google Scholar
Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Funct. Ecol. 35, 894–908 (2021).
Google Scholar
Gough, W. T. et al. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J. Exp. Biol. 224, jeb237586 (2021).
Google Scholar
Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 16 (Univ. California Press, 2006).
Woodward, B. L., Winn, J. P. & Fish, F. E. Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J. Morphol. 267, 1284–1294 (2006).
Google Scholar
Webb, P. W. & De Buffrénil, V. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119, 629–641 (1990).
Google Scholar
Acevedo-Gutiérrez, A., Croll, D. & Tershy, B. High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 1747–1753 (2002).
Google Scholar
Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).
Google Scholar
Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. Rorqual lunge-feeding energetics near and away from the kinematic threshold of optimal efficiency. Integr. Org. Biol. 3, obab005 (2021).
Google Scholar
Pyenson, N. D. The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27, R558–R564 (2017).
Google Scholar
Williams, T. M. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 15 (Univ. California Press, 2006).
Tackaberry, J. E. et al. From a calf’s perspective: humpback whale nursing behavior on two US feeding grounds. PeerJ 8, e8538 (2020).
Google Scholar
Huang, S.-L., Chou, L.-S. & Ni, I.-H. Comparable length at weaning in cetaceans. Mar. Mamm. Sci. 25, 875–887 (2009).
Google Scholar
Rice, D. Marine Mammals of the World: Systematics and Distribution (Society for Marine Mammalogy Special Publication, 1998).
McNamara, J. M. & Houston, A. I. The effect of a change in foraging options on intake rate and predation rate. Am. Nat. 144, 978–1000 (1994).
Google Scholar
Mittelbach, G. G. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).
Google Scholar
Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).
Google Scholar
Werth, A. J. et al. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol. J. Linn. Soc. 125, 264–279 (2018).
Google Scholar
Leslie, M. S., Peredo, C. M. & Pyenson, N. D. Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California. PeerJ 7, e7629 (2019).
Google Scholar
Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).
Google Scholar
Perrin, W. F. Why are there so many kinds of whales and dolphins? Bioscience 41, 460–462 (1991).
Google Scholar
Kot, B. W., Sears, R., Zbinden, D., Borda, E. & Gordon, M. S. Rorqual whale (Balaenopteridae) surface lunge‐feeding behaviors: standardized classification, repertoire diversity, and evolutionary analyses. Mar. Mamm. Sci. 30, 1335–1357 (2014).
Google Scholar
Segre, P. S. et al. Scaling of maneuvering performance in baleen whales: larger whales outperform expectations. J. Exp. Biol. 225, jeb243224 (2022).
Google Scholar
Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).
Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).
Google Scholar
McMillan, C. J., Towers, J. R. & Hildering, J. The innovation and diffusion of “trap‐feeding,” a novel humpback whale foraging strategy. Mar. Mamm. Sci. 35, 779–796 (2019).
Google Scholar
Robbins, J. & Mattila, D. Estimating Humpback Whale (Megaptera novaeangliae) Entanglement Rates on the Basis of Scar Evidence (Northeast Fisheries Science Center, 2004).
Horwood, J. in Encyclopedia of Marine Mammals 2nd edn (eds Wursig, B et al.) 1001–1003 (Elsevier, 2009).
Haug, T., Lindstrøm, U. & Nilssen, K. T. Variations in minke whale (Balaenoptera acutorostrata) diet and body condition in response to ecosystem changes in the Barents Sea. Sarsia 87, 409–422 (2002).
Google Scholar
García-Vernet, R., Borrell, A., Víkingsson, G., Halldórsson, S. D. & Aguilar, A. Ecological niche partitioning between baleen whales inhabiting Icelandic waters. Prog. Oceanogr. 199, 102690 (2021).
Google Scholar
Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).
Google Scholar
Deméré, T. A., McGowen, M. R., Berta, A. & Gatesy, J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 57, 15–37 (2008).
Google Scholar
Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).
Google Scholar
Totterdell, J. A. et al. The first three records of killer whales (Orcinus orca) killing and eating blue whales (Balaenoptera musculus). Mar. Mamm. Sci. 38, 1286–1301 (2022).
Google Scholar
Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).
Google Scholar
Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).
Google Scholar
Bierlich, K. et al. Comparing uncertainty associated with 1-, 2-, and 3D aerial photogrammetry-based body condition measurements of baleen whales. Front. Mar. Sci. 8, 1729 (2021).
Google Scholar
Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelemetry https://doi.org/10.1186/s40317-021-00256-w (2021).
Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).
Google Scholar
Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res. II 54, 193–210 (2007).
Google Scholar
Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. A perfectly inelastic collision: bulk prey engulfment by baleen whales and dynamical implications for the world’s largest cetaceans. Am. J. Phys. 88, 851–863 (2020).
Google Scholar
Torres, W. I. & Bierlich, K. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).
Google Scholar
Suter, H. & Houston, A. I. How to model optimal group size in social carnivores. Am. Nat. 197, 473–485 (2021).
Google Scholar
Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whale (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).
Google Scholar
Doniol-Valcroze, T., Lesage, V., Giard, J. & Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 22, 880–888 (2011).
Google Scholar
Gough, W. T. et al. Fast and furious: energetic tradeoffs and scaling of high-speed foraging in rorqual whales. Integr. Org. Biol. 4, obac038 (2022).
Google Scholar
Laws, R. M. The ecology of the Southern Ocean. Am. Sci. 73, 26–40 (1985).
Brown, S. & Lockyer, C. in Antarctic Ecology Vol. 2 (ed. Laws, R. M.) (Academic Press, 1984).
Peters, R. H. The Ecological Implications of Body Size Vol. 2 Ch. 7 (Cambridge Univ. Press, 1986).
Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).
Google Scholar
Evans, E. & Miller, D. Comparative nutrition, growth and longevity. Proc. Nutr. Soc. 27, 121–129 (1968).
Google Scholar
Farlow, J. O. A consideration of the trophic dynamics of a Late Cretaceous large‐dinosaur community (Oldman Formation). Ecology 57, 841–857 (1976).
Google Scholar
Harestad, A. S. & Bunnel, F. Home range and body weight – a reevaluation. Ecology 60, 389–402 (1979).
Google Scholar
Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).
Google Scholar
Calder, W. A. in Avian Energetics (ed. Paynter, R. A.) 86–151 (Nuttall Ornithological Club, 1974).
Savage, V. M., Deeds, E. J. & Fontana, W. Sizing up allometric scaling theory. PLoS Comp. Biol. 4, e1000171 (2008).
Google Scholar
Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).
Google Scholar
Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).
Google Scholar
Source: Ecology - nature.com