in

Forest-degradation thresholds shape tropical biodiversity

  • Ewers, R. M. et al. Nature https://doi.org/10.1038/s41586-024-07657-w (2024).

    Article 

    Google Scholar 

  • Laurance, W. F. et al. Nature 489, 290–294 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Gibson, L. et al. Nature 478, 378–381 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Pimm, S. L. & Raven, P. Nature 403, 843–845 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Wright, S. J. Trends Ecol. Evol. 20, 553–560 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Trends Ecol. Evol. 29, 511–520 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Curr. Biol. 24, 1893–1898 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Nowakowski, A. J. et al. Ecol. Lett. 21, 345–355 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Stouffer, P. C. et al. Ecol. Lett. 24, 186–195 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Glob. Change Biol. 28, 797–815 (2022).

    Article 

    Google Scholar 

  • Lapola, D. M. et al. Science 379, eabp8622 (2023).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    AI method radically speeds predictions of materials’ thermal properties

    Collaborative effort supports an MIT resilient to the impacts of extreme heat