Rosen, S. A. Basic Instabilities? Climate and Culture in the Negev over the Long Term. 32, 6–22 (2016).
Finkelstein, I. Living on the fringe: the archaeology and history of the Negev, Sinai and neighbouring regions in the Bronze and Iron Ages. (Sheffield Academic Press, 1995).
Evenari, M., Shannan, L. & Tadmor, N. The Negev: The Challenge of the Desert. (Harvard University Press, 1982).
Horowitz, A. The Quaternary of Israel. (Academic Press, 1979).
Rosen, A. M. & Rosen, S. Environmental change and society in Holocene prehistory. Quat. Levant Environ. Clim. Chang. Humans 761–766 (2017).
Avni, Y., Avni, G. & Porat, N. A review of the rise and fall of ancient desert runoff agriculture in the Negev Highlands – A model for the southern Levant deserts. J. Arid Environ. 163, 127–137 (2019).
McCormick, M., Cook, E. R., Manning, S. W. & More, A. F. M. Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. J. Interdiscip. Hist. 43, 169–220 (2012).
Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. Perspect. 115, 3210–3218 (2018).
Avni, G. The Byzantine-Islamic Transition in Palestine: An Archaeological Approach. (Oxford University Press, 2014).
Erickson-Gini, T. Nabataean settlement and self-organized economy in The Central Negev: crisis and renewal. (Archaeopress, 2010).
Rosen, S. A. & Avni, G. The Edge of the Empire: The Archaeology of Pastoral Nomads in the Southern Negev Highlands in Late Antiquity. Biblic. Archaeol. 56, 189–199 (1993).
Tepper, Y., Erickson-Gini, T. & Farhi, Y. Probing the Byzantine/Early Islamic Transition in the Negev: The Renewed Shivta Excavations, 2015–2016. Tel Aviv J. Inst. Archaeol. Tel Aviv Univ. 45, 120–152 (2018).
Marom, N. et al. Zooarchaeology of the social and economic upheavals in the Late Antique-Early Islamic sequence of the Negev Desert. Sci. Rep. 9, 6702 (2019).
Avni, Y., Porat, N. & Avni, G. Pre-farming environment and OSL chronology in the Negev Highlands, Israel. J. Arid Environ. 86, 12–27 (2012).
Bruins, H. J., Bithan-Guedj, H. & Svoray, T. GIS-based hydrological modelling to assess runoff yields in ancient-agricultural terraced wadi fields (central Negev desert). J. Arid Environ. 166, 91–107 (2019).
Horowitz, A. Pollen spectra from two early Holocene prehistoric sites in the Har Harif (West Central Negev). Prehistory Paleoenviron. Cent. Negev. Isr. 2, 323–326 (1977).
Goodfriend, G. A. Rainfall in the Negev Desert during the Middle Holocene, based on 13C Organic Matter in Land Snail Shells. Quat. Res. 34, 186–197 (1990).
Enzel, Y. et al. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat. Res. 60, 263–273 (2003).
Amit, R., Enzel, Y. & Sharon, D. Permanent Quaternary aridity in the southern Negev, Israel. Geology 34, 509–512 (2006).
Bar-Matthews, M., Ayalon, A. & Kaufman, A. Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Spelethems at Soreq Cave, Israel. Quat. Res. 168, 155–168 (1997).
Bar-Matthews, M. et al. Sea – land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).
Almogi-Labin, A. et al. Climatic variability during the last ~90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quat. Sci. Rev. 28, 2882–2896 (2009).
Orland, I. J. et al. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat. Res. 71, 27–35 (2009).
Bookman, R., Enzel, Y., Agnon, A. & Stein, M. Late Holocene lake levels of the dead sea. Bull. Geol. Soc. Am. 116, 555–571 (2004).
Bar-Oz, G. et al. Ancient trash mounds unravel urban collapse a century before the end of Byzantine hegemony in the southern Levant. Proc. Natl. Acad. Sci. 116, 8239–8248 (2019).
Little, L. K. Plague and the End of Antiquity: The Pandemic of 541–750. (Cambridge University Press, 2007).
Ramsay, J. & Tepper, Y. Signs from a green desert: A preliminary examination of the archaeobotanical remains from a Byzantine dovecote near Shivta. Israel. Veg. Hist. Archaeobot. 19, 235–242 (2010).
Ramsay, J. et al. For the birds–An environmental archaeological analysis of Byzantine pigeon towers at Shivta (Negev Desert, Israel). J. Archaeol. Sci. Reports 9, 718–727 (2016).
Fried, T., Weissbrod, L., Tepper, Y. & Bar-Oz, G. A glimpse of an ancient agricultural ecosystem based on remains of micromammals in the Byzantine Negev Desert. R. Soc. Open Sci. 5, 171528 (2018).
Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).
Fraser, R. et al. Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J. Archaeol. Sci. 38, 2790–2804 (2011).
Bailey, C. & Danin, A. Bedouin Plant Utilization in Sinai and the Negev. Econ. Bot. 35, 145–162 (1981).
Perevolotsky, A., Perevolotsky, A. & Noy-Meir, I. Environmental Adaptation and Economic Change in a Pastoral Mountain Society: The Case of the Jabaliyah Bedouin of the Mt. Sinai Region. Mt. Res. Dev. 9, 153–164 (1989).
Bryant, J. D., Froelich, P. N., Showers, W. J. & Genna, B. J. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 75–89 (1996).
Britton, K., Grimes, V., Dau, J. & Richards, M. P. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). J. Archaeol. Sci. 36, 1163–1172 (2009).
Bowen, G. J. & Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 30, 315–318 (2002).
Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 385–390 (1984).
Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225–262 (1996).
Hillson, S. T. (Cambridge University Press, 2005).
Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and plaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 91–99 (1996).
Gat, J. R. The isotopes of hydrogen and oxygen in precipiation. In Handbook of Environmental Isotope Geochemistry (eds. Fritz, P. & Fontes, J. C.) 21–42 (Elsevier, 1980).
Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records (eds. Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 1–36 (American Geophysical Union, 1993).
Gat, J. R. & Dansgaard, W. Stable Isotope Survey of the Fresh Water Occurrences in Israel and the Northern Jordan Rift Valley. J. Hydrol. 177–212 (1972).
Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).
Vogel, J. C. & van der Merwe, N. J. Isotopic Evidence for Early Maize Cultivation in New York State. Am. Antiq. 42, 238–242 (1977).
Hartman, G. & Danin, A. Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162, 837–52 (2010).
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–437 (1989).
Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).
Reid, R. E. B., Lalk, E., Marshall, F. & Liu, X. Carbon and nitrogen isotope variability in the seeds of two African millet species: Pennisetum glaucum and Eleusine coracana. Rapid Commun. Mass Spectrom. 32, 1693–1702 (2018).
Le Houerou, H. H. Diffuse vs. contracted vegetation patterns: An objective demarcation between arid and desert vegetations. Isr. J. Plant Sci. 53, 177–182 (2005).
Russow, R., Veste, M. & Böhme, F. A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Commun. Mass Spectrom. 19, 3451–3456 (2005).
Heaton, T. H. E. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74, 236–246 (1987).
Silanikove, N. The physiological basis of adaptation in goats to harsh environments. Small Rumin. Res. 35, 181–193 (2000).
Makarewicz, C. A. Winter pasturing practices and variable fodder provisioning detected in nitrogen (δ15N) and carbon (δ13C) isotopes in sheep dentinal collagen. J. Archaeol. Sci. 41, 502–510 (2014).
Hartman, G., Hovers, E., Hublin, J.-J. & Richards, M. Isotopic evidence for Last Glacial climatic impacts on Neanderthal gazelle hunting territories at Amud Cave, Israel. J. Hum. Evol. 84, 71–82 (2015).
Hallin, K. A., Schoeninger, M. J. & Schwarcz, H. P. Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: the stable isotope data. J. Hum. Evol. 62, 59–73 (2012).
Marx, E. Bedouins of the Negev. (Manchester University Press, 1967).
Hartman, G. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Funct. Ecol. 25, 122–131 (2011).
Ambrose, S. H. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317 (1991).
Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17, 1–10 (2003).
Murphy, B. P. & Bowman, D. M. J. S. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Funct. Ecol. 20, 1062–1069 (2006).
Hedges, R. E. M. & Reynard, L. M. Nitrogen isotopes and the trophic level of humans in archaeology. J. Archaeol. Sci. 34, 1240–1251 (2007).
Dunseth, Z. C. et al. Archaeobotanical proxies and archaeological interpretation: A comparative study of phytoliths, pollen and seeds in dung pellets and refuse deposits at Early Islamic Shivta, Negev, Israel. Quat. Sci. Rev. 211, 166–185 (2019).
Goren-Inbar, N. Ethnoarchaeology: The Southern Sinai Bedouin as a Case Study. in Biblical Archaeology Today, 1990: Proceedings from the Second International Congress on Biblical Archaeology 417–419 (1990).
Eloul, R. Culture Change in a Bedouin Tribe: The ‘arab al-Ḥğerāt, Lower Galilee, A.D. 1790–1977. In Anthropological Papers of the Museum of Anthropology 97 (University of Michigan Press, 2010).
Barth, F. Nomads of South Persia. (Little Brown, 1961).
Rosen, S. A. Revolutions in the Desert: The Rise of Mobile Pastoralism in the Negev and the Arid Zones of the Southern Levant. (Routledge, 2016).
Nevo, Y. D. Pagans and herders: a re-examination of the Negev runoff cultivation systems in the Byzantine and Early Arab periods. 1, (IPS Limited, 1991).
Mayerson, P. The Saracens and the Limes. Bull. Am. Sch. Orient. Res. 262, 35–47 (1986).
Halstead, P. Two Oxen Ahead: Pre-Mechanized Farming in the Mediterranean. (John Wiley & Sons, 2014).
Marom, N., Rosen, B., Tepper, Y. & Bar-oz, G. Pigeons at the edge of the empire: Bioarchaeological evidences for extensive management of pigeons in a Byzantine desert settlement in the southern Levant. PLoS One 13, e0193206 (2018).
Tepper, Y. et al. Pigeon-raising and sustainable agriculture at the fringe of the desert: a view from the Byzantine village of Sa’adon, Negev, Israel. Levant 50, 91–113 (2018).
Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).
Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. mass Spectrom. 23, 3843–3854 (2009).
Buckley, M. et al. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. J. Archaeol. Sci. 37, 13–20 (2010).
Balasse, M. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. Int. J. Osteoarchaeol. 12, 155–165 (2002).
Balasse, M., Ambrose, S. H., Smith, A. B. & Price, T. D. The Seasonal Mobility Model for Prehistoric Herders in the South-western Cape of South Africa Assessed by Isotopic Analysis of Sheep Tooth Enamel. J. Archaeol. Sci. 29, 917–932 (2002).
Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Reports 13, 609–616 (2017).
Richards, M. P. & Hedges, R. E. M. Stable Isotope Evidence for Similarities in the Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the Atlantic Coast of Europe. J. Archaeol. Sci. 26, 717–722 (1999).
Source: Ecology - nature.com