in

Ancient DNA and high-resolution chronometry reveal a long-term human role in the historical diversity and biogeography of the Bahamian hutia

  • 1.

    Kirch, P. V. Microcosmic histories: island perspectives on global change. Am. Anthropol. 99, 30–42 (1997).

    • Article
    • Google Scholar
  • 2.

    Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).

    • Article
    • Google Scholar
  • 3.

    Warren, B. H. et al. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur‐Wilson. Ecol. Lett. 18, 200–217 (2015).

  • 4.

    Steadman, D. W. et al. Asynchronous extinction of late Quaternary sloths on continents and islands. Proc. Natl. Acad. Sci. USA 102, 11763–11768 (2005).

  • 5.

    Rick, T. C. et al. Origins and antiquity of the island fox (Urocyon littoralis) on California’s Channel Islands. Quat. Res. 71, 93–98 (2009).

    • Article
    • Google Scholar
  • 6.

    Steadman, D. W. et al. Exceptionally well-preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, Bahamas. Proc. Natl. Acad. Sci. USA 104, 19897–19902 (2007).

  • 7.

    Steadman, D. W. & Franklin, J. Changes in a West Indian bird community since the late Pleistocene. J. Biogeogr. 42, 426–438 (2015).

    • Article
    • Google Scholar
  • 8.

    Steadman, D. W. et al. Vertebrate community on an ice-age Caribbean island. Proc. Natl. Acad. Sci. USA 112, E5963–E5971 (2015).

  • 9.

    Oswald, J. A. & Steadman, D. W. The late Pleistocene bird community of New Providence, Bahamas. Auk. 135, 359–377 (2018).

    • Article
    • Google Scholar
  • 10.

    Steadman, D. W., Pregill, G. K. & Olson, S. L. Fossil vertebrates from Antigua, Lesser Antilles: Evidence for late Holocene human-caused extinctions in the West Indies. Proc. Natl. Acad. Sci. USA 81, 4448–4451 (1984).

  • 11.

    Newsom, L. A. & Wing, E. S. On land and sea: Native American uses of biological resources in the West Indies (University of Alabama Press, 2004).

  • 12.

    Cooke, S. B., Mychajliw, A. M., Southon, J. & MacPhee, R. D. E. The extinction of Xenothrix mcgregori, Jamaica’s last monkey. J. Mammal. 98, 937–949 (2017).

    • Article
    • Google Scholar
  • 13.

    Upham, N. S. Past and present of insular Caribbean mammals: Understanding Holocene extinctions to inform modern biodiversity conservation. J. Mammal. 98, 913–917 (2017).

    • Article
    • Google Scholar
  • 14.

    Hearty, P. J., Neumann, A. C. & Kaufman, D. S. Chevron ridges and runup deposits in the Bahamas from storms late in oxygen-isotope substage 5e. Quat. Res. 50, 309–322 (1998).

    • Article
    • Google Scholar
  • 15.

    Steadman, D. W. & Franklin, J. Origin, paleoecology and extirpation of bluebirds and crossbills in the Bahamas across the last glacial-interglacial transition. Proc. Natl. Acad. Sci. USA 114, 9924–9929 (2017).

  • 16.

    Courcelle, M., Tilak, M.-K., Leite, Y. L. R., Douzery, E. J. P. & Fabre, P.-H. Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Mol. Phylogenet. Evol. 136, 241–253 (2019).

  • 17.

    Woods, C. A., Borroto-Páez, R. & Kilpatrick, C. Insular patterns and radiation of West Indian rodents in Biogeography of the West Indies: patterns and perspectives (eds. Woods, C. A. & Sergile, F. E.) 333–351 (CRC Press, 2001).

  • 18.

    MacPhee, R. D. E. Insulae infortunatae: Establishing the chronology of late Quaternary mammal extinctions in the West Indies in American megafaunal extinctions at the end of the Pleistocene (ed. Haynes, G.) 169–197 (Springer, 2009).

  • 19.

    Goodall, P. M. P. A historical survey of research on land mammals in the Greater Antilles in Terrestrial mammals of the West Indies: contributions (eds. Borroto-Páez, R., Woods, C.A. & Sergile, F. E.) 3–10 (Florida Museum of Natural History, 2012).

  • 20.

    Upham, N. S. & Borroto-Páez, R. Molecular phylogeography of endangered Cuban hutias within the Caribbean radiation of capromyid rodents. J. Mammal. 98, 950–963 (2017).

    • Article
    • Google Scholar
  • 21.

    MacPhee, R. & Iturralde-Vinent, M. Origin of the Greater Antilles land mammal fauna, 1: New Tertiary fossils from Cuba and Puerto Rico. Am. Mus. Novit. 3141, 1–31 (1995).

    • Google Scholar
  • 22.

    MacPhee, R. D. E., Flemming, C. & Lunde, D. P. Last occurrence of the Antillean insectivoran Nesophontes: New radiometric dates and their interpretation. Am. Mus. Novit. 3261, 1–20 (1999).

    • Google Scholar
  • 23.

    Dávalos, L. M. & Turvey, S. T. West Indian mammals: the old, the new, and the recently extinct in Bones, clones, and biomes: The history and geography of Recent Neotropical mammals (eds. Patterson, B. D. & Costa, L. P.) 157–202 (University of Chicago Press, 2012).

  • 24.

    Turvey, S. T. & Dávalos, L. Geocapromys brownii, Jamaican hutia. The IUCN Red List of Threatened Species 2008: e.T9001A12948823 (2008).

  • 25.

    Turvey, S. T., Kennerley, R. J., Nuñez-Miño, J. M. & Young, R. P. The Last Survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J. Mammal. 98, 918–936 (2017).

    • Article
    • Google Scholar
  • 26.

    Borroto-Páez, R. & Woods, C. A. Feeding habits of the capromyid rodents in Terrestrial mammals of the West Indies: contributions (eds. Borroto-Páez, R., Woods, C. A. & Sergile, F. E.) 221–228 (Florida Museum of Natural History, 2012).

  • 27.

    Morgan, G. S., MacPhee, R. D. E., Woods, R. & Turvey, S. T. Late Quaternary fossil mammals from the Cayman Islands, West Indies. Bull. Am. Mus. Nat. Hist. 428, 1–79 (2019).

    • Google Scholar
  • 28.

    Clough, G. C. Current status of two endangered Caribbean rodents. Biol. Conserv. 10, 43–47 (1976).

    • Article
    • Google Scholar
  • 29.

    Morgan, G. S. Taxonomic status and relationships of the Swan Island hutia, Geocapromys thoracatus (Mammalia: Rodentia: Capromyidae), and the zoogeography of the Swan Islands vertebrate fauna. Proc. Biol. Soc. Wash. 98, 29–46 (1985).

    • Google Scholar
  • 30.

    Morgan, G. S. Geocapromys thoracatus. Mamm. Species. 341, 1–5 (1989).

    • Article
    • Google Scholar
  • 31.

    Clough, G. C. Biology of the Bahamian hutia, Geocapromys ingrahami. J. Mammal. 53, 807–823 (1972).

    • Article
    • Google Scholar
  • 32.

    Allen, J. A. Description of a new species of Capromys from the Plana Keys, Bahamas. Bull. Am. Mus. Nat. Hist. 3, 329–336 (1891).

    • Google Scholar
  • 33.

    Brodkorb, P. Pleistocene birds from New Providence Island, Bahamas. Bull. Florida State Mus., Biol. Sci. 4, 349–371 (1959).

    • Google Scholar
  • 34.

    Olson, S. L. & Pregill, G. K. Introduction to the paleontology of Bahaman vertebrates. Smithson. contrib. paleobiol. 48, 1–7 (1982).

    • Google Scholar
  • 35.

    Lawrence, B. N. Geocapromys from the Bahamas. Occas. pap. Boston Soc. Nat. Hist. 8, 189–196 (1934).

    • Google Scholar
  • 36.

    Allen, G. M. Geocapromys remains from Exuma Island. J. Mammal. 18, 369–370 (1937).

    • Article
    • Google Scholar
  • 37.

    Jordan, K. C. An ecology of the Bahamian hutia. PhD diss., University of Florida (1989).

  • 38.

    Jordan, K. C. Ecology of an introduced population of the Bahamian hutia (Geocapromys ingrahami) in Terrestrial mammals of the West Indies: contributions (eds. Borroto-Páez, R., Woods, C. A. & Sergile, F. E.) 115–142 (Florida Museum of Natural History, 2012).

  • 39.

    Berman, M. J., Gnivecki, P. L. & Pateman, M. P. The Bahama Archipelago in The Oxford handbook of Caribbean archaeology (eds. Keegan, W. F., Hofman, C. L., Rodríguez-Ramos, R.) 264–280 (Oxford University Press, 2013).

  • 40.

    Keegan, W. F. & Hofman, C. L. The Caribbean before Columbus. (Oxford University Press, 2017).

  • 41.

    Carlson, L. A. Aftermath of a feast: Human colonization of the Southern Bahamian Archipelago and its effects on the indigenous fauna. Ph.D. Dissertation, Department of Anthropology, University of Florida, Gainesville, FL (1999).

  • 42.

    LeFebvre, M. J., deFrance, S. D., Kamenov, G. D., Keegan, W. F. & Krigbaum, J. The zooarchaeology and isotopic ecology of the Bahamian Hutia (Geocapromys ingrahami): Evidence for Pre-Columbian anthropogenic management. PLOS ONE 14(9), e0220284 (2019).

  • 43.

    LeFebvre, M. J., DuChemin, G., deFrance, S. D., Keegan, W. F. & Walczesky, K. Bahamian hutia (Geocapromys ingrahami) in the Lucayan realm: Pre-Columbian exploitation and translocation. Environ. Archaeol. 24, 115–131 (2019).

    • Article
    • Google Scholar
  • 44.

    Steadman, D. W. et al. Late Holocene historical ecology: The timing of vertebrate extirpation on Crooked Island, The Bahamas. J. Island Coast. Arch. 12, 572–584 (2017).

    • Article
    • Google Scholar
  • 45.

    Steadman, D. W., Albury, N. A., Mead, J. I., Soto-Centeno, J. A. & Franklin, J. Holocene vertebrates from a dry cave on Eleuthera Island, Commonwealth of The Bahamas. Holocene. 28, 806–813 (2017).

  • 46.

    Clough, G. C. A most peaceable rodent. Natural History 82, 66–74 (1973).

    • Google Scholar
  • 47.

    Clough, G. C. Additional notes on the biology of the Bahamian hutia, Geocapromys ingrahami. J. Mammal. 55, 670–672 (1974).

  • 48.

    Wing, E. S. Zooarchaeology of West Indian land mammals in Terrestrial mammals of the West Indies: contributions (eds. R Borroto-Páez, CA Woods, FE Sergile) 342–356 (Florida Museum of Natural History, 2012).

  • 49.

    LeFebvre M. J. & deFrance, S. D. Animal management and domestication in the realm of Ceramic Age farming in The archaeology of Caribbean and circum-Caribbean farmers (6000 BC – AD 1500) (ed. Reid, B.) 149–170 (Routledge, 2018).

  • 50.

    Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nat. Rev. Genet. 2(5), 353–9 (2001).

  • 51.

    Gilbert, M. T. P. et al. Characterization of genetic miscoding lesions caused by postmortem damage. Am. J. Hum. Genet. 72(1), 48–61 (2003).

  • 52.

    Fabre, P.-H. et al. Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Mol. Biol. Evol. 34, 613–633 (2017).

  • 53.

    Rick, T. C. & Lockwood, R. Integrating paleobiology, archaeology, and history to inform biological conservation. Conserv. Biol. 27(1), 45–54 (2012).

  • 54.

    Morgan, G. S. Fossil Chiroptera and Rodentia from the Bahamas, and the historical biogeography of the Bahamian mammal fauna in Biogeography of the West Indies: past, present, and future (Woods, C. A.) 685-740 (Sandhill Crane Press, 1989).

  • 55.

    Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–43 (1998).

  • 56.

    Yang, D. Y., Liu, L., Chen, X. & Speller, C. F. Wild or domesticated: DNA analysis of ancient water buffalo remains from north China. J. Archaeol. Sci. 35, 2778–2785 (2008).

    • Article
    • Google Scholar
  • 57.

    Oswald, J. A. et al. 2,500-year-old aDNA from Caribbean fossil places an extinct bird (Caracara creightoni) in a phylogenetic context. Mol. Phylogenet. Evol. 140, 106576 (2019).

  • 58.

    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

  • 59.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

  • 60.

    Guindon, S. & Gascuel, O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst. Biol. 52, 696–704 (2003).

  • 61.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

  • 62.

    Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–3 (2014).

  • 63.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).

  • 64.

    Suzuki, Y., Tomozawa, M., Koizumi, Y., Tsuchiya, K. & Suzuki, H. Estimating the molecular evolutionary rates of mitochondrial genes referring to quaternary ice age events with inferred population expansions and dispersals in Japanese Apodemus. BMC Evol. Biol. 15, 187 (2015).

  • 65.

    MacPhee, R. D. E., Iturralde-Vinent, M. A. & Gaffney, E. S. Domo de Zaza. An early Miocene vertebrate locality in south-central Cuba, with notes on the tectonic evolution of Puerto Rico and the Mona Passage. Am. Mus. Novit. 3394, 1–42 (2003).

    • Article
    • Google Scholar
  • 66.

    Fabre, P.-H. et al. Rodents of the Caribbean: Origin and diversification of hutias unraveled by next-generation museomics. Biol. Lett. 10, 20140266 (2014).

  • 67.

    Verzi, D. H., Vucetich, M. G. & Montalvo, C. I. Un nuevo Eumysopinae (Rodentia, Echimyidae) del Mioceno tardío de la provincia de La Pampa y consideraciones sobre la historia de la subfamilia. Ameghiniana 32, 191–195 (1995).

    • Google Scholar
  • 68.

    Olivares, A. I., Verzi, D. H., Vucetich, M. G. & Montalvo, C. I. Phylogenetic affinities of the late Miocene echimyid Pampamys and the age of Thrichomys (Rodentia, Hystricognathi). J. Mammal. 93, 76–86 (2012).

    • Article
    • Google Scholar
  • 69.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. syy032 (2018).

  • 70.

    Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–20 (2010).

  • 71.

    Eakins, B. W. & Sharman, G. F. Hypsographic curve of Earth’s surface from ETOPO1, NOAA National Geophysical Data Center, Boulder, CO, https://www.ngdc.noaa.gov/mgg/global/etopo1_surface_histogram.html (2012).

  • 72.

    ESRI. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute (2011).


  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters