in

Assessing arid Inland Lake Watershed Area and Vegetation Response to Multiple Temporal Scales of Drought Across the Ebinur Lake Watershed

  • 1.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. 110, 52–57 (2013).

  • 2.

    Zhang, S. et al. Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environmental Modelling & Software 122, 104519 (2019).

    • Article
    • Google Scholar
  • 3.

    Le, P. V. V., Phan‐Van, T., Mai, K. V. & Tran, D. Q. Space‐time variability of drought over Vietnam. International Journal of Climatology 39, 5437–5451 (2019).

  • 4.

    Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Scientific Reports 9, 1–20 (2019).

  • 5.

    Liu, X. et al. Drought evolution and its impact on the crop yield in the North China Plain. Journal of Hydrology 564, 84–996 (2018).

    • Article
    • Google Scholar
  • 6.

    Zhang, X. et al. Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems. Advances in Atmospheric Sciences 36(11), 1273–1287 (2019).

  • 7.

    Palmer, W. C. Meteorological Drought. US Department of Commerce, Weather Bureau, Washington, DC. (1965).

  • 8.

    McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology. Boston, MA. Am. Meteorol. Soc. 17, 179–183 (1993).

    • Google Scholar
  • 9.

    Sandholt, I., Rasmussen, K. & Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79, 213–224 (2002).

  • 10.

    Sun, P., Zhang, Q., Wen, Q., Singh, V. P. & Shi, P. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China. Journal of Geophysical Research: Atmospheres 122, 10–751 (2017).

    • Google Scholar
  • 11.

    Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agricultural and forest meteorology 268, 74–85 (2019).

  • 12.

    Tirivarombo, S., Osupile, D. & Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Physics and Chemistry of the Earth Parts A/B/C 106, 1–10 (2018).

  • 13.

    Zhong, R. et al. Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of hydrology 568, 343–359 (2019).

  • 14.

    Guttman, N. B. Comparing the Palmer drought index and the standardized precipitation index. J. Am. Water Resour. Assoc. 34, 113–121 (1998).

  • 15.

    Vicente-Serrano, S. M., Begueria, S. & Lopez-Moreno, J. I. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspi-ration index. Journal of Climate 23, 1696–1718 (2010).

  • 16.

    Li, C. et al. Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. Journal of Cleaner Production 179, 210–216 (2018).

    • Article
    • Google Scholar
  • 17.

    Peña-Gallardo, M. et al. Response of crop yield to different time-scales of drought in the United States: Spatio-temporal patterns and climatic and environmental drivers. Agricultural and Forest Meteorology 264, 40–55 (2019).

  • 18.

    Wong, C. P. et al. Lake and wetland ecosystem services measuring water storage and local climate regulation. Water. Resour. Res. 53, 3197–3223 (2017).

  • 19.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10–773 (2015).

    • Google Scholar
  • 20.

    Cui, H., Zhou, X., Guo, M. & Wei, W. Land use change and its effects on water quality in typical inland lake of arid area in China. J. Environ. Biol. 37, 603–609 (2016).

  • 21.

    Wu, S. et al. Change detection of lakes in Arid Central Asia base on Landsat images in recent 25 years. J. Hangzhou Normal. Univ. 2, 237–332 (2017).

    • Google Scholar
  • 22.

    Wang, J. et al. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena 177, 189–201 (2019).

    • Article
    • Google Scholar
  • 23.

    Tong, X. et al. Assessing future vegetation trends and restoration prospects in the Karst Regions of Southwest China. Remote Sens. 8, 357 (2016).

  • 24.

    Lin, Q. et al. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China. Journal of hydrology 549, 512–524 (2017).

  • 25.

    Pei, F. et al. Monitoring the vegetation activity in China using vegetation health indices. Agricultural and forest meteorology 248, 215–227 (2018).

  • 26.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. Crop yields under climate change. Proc. Natl. Acad. Sci. 106, 15594–15598 (2009).

  • 27.

    Ramadas, M. & Govindaraju, R. S. Probabilistic assessment of agricultural droughts using graphical models. J. Hydrol. 526, 151–163 (2015).

  • 28.

    Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol.Manag. 259, 698–709 (2010).

    • Article
    • Google Scholar
  • 29.

    Zhao, A. Z., Zhang, A. B., Liu, X. F. & Cao, S. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theor. Appl. Climatol. 132, 1–13 (2018).

    • Article
    • Google Scholar
  • 30.

    Arzac, R., García-Cervigón, A. I., Vicente-Serrano, S. M., Loidi, J. & Olano, J. M. Phenological shifts in climatic response of secondary growth allow Juniperus sabina L. To cope with altitudinal and temporal climate variability. Agric. For. Meteorol. 217, 35–45 (2016).

  • 31.

    Zhang, Z. et al. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment 635, 443–451 (2018).

  • 32.

    Zhang, F., Yushanjiang, A. & Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Science of the Total Environment 656, 1133–1144 (2019).

  • 33.

    Zhang, F., Wang, J. & Wang, X. Recognizing the relationship between spatial patterns in water quality and land-use/cover types: A case study of the Jinghe Oasis in Xinjiang, China. Water 10, 646 (2018).

    • Article
    • Google Scholar
  • 34.

    Ma, M., Wang, X., Veroustraete, F. & Dong, L. Change in area of Ebinur Lake during the 1998–2005 period. International Journal of Remote Sensing 28, 5523–5533 (2007).

  • 35.

    Bai, J., Chen, X., Li, J., Yang, L. & Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 178, 247–256 (2011).

  • 36.

    Wu, Y. et al. Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China. Stochastic environmental research and risk assessment 30, 225–235 (2016).

    • Article
    • Google Scholar
  • 37.

    Potopova, V. et al. Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorological 202, 26–38 (2015).

  • 38.

    Wang, Y., Liu, Z., Yao, J., Bayin, C. & Zhu, Y. Hydrological response of runoff to climate change of typical tributaries in Ebinur Lake Basin of Xinjiang. Water resources 45, 160–168 (2018).

  • 39.

    Tan, J., Ding, J. L., Dong, Y., Yang, A. X. & Zhang, Z. Decadal variation of potential evapotranspiration in Ebinur Lake oasis of Xinjiang. Transactions of the CSAE. 33, 143–148 (2017).

    • Google Scholar
  • 40.

    Vicente-Serrano, S. M. et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions 16, 1–27 (2012).

    • Article
    • Google Scholar
  • 41.

    Tang, X. L., Xu, L. P., Zhang, Z. Y. & Lv, X. Effects of glacier melting on socioeconomic development in the Manas River basin, China. Natural Hazards 66, 533–544 (2013).

    • Article
    • Google Scholar
  • 42.

    Liu, C., Xie, Z., Liu, S., Chen, J. & Sen, Y. Glacial water resources and their change. In E. Kang (Ed.), Glacier-snow water resources and mountain runoff in the arid area of Northwest China. Beijing: Science Press (2002).

  • 43.

    Su, X., Liu, T., Wei, Y., Wang, Y. & Liu, Y. Change of Ebinur Lake area and its response characteristics of the runoff change. Research of Soil and Water Conservation 23, 252–256 (2016).

    • Google Scholar
  • 44.

    Ahmed, K., Shahid, S. & Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmospheric Research 214, 364–374 (2018).

  • 45.

    Vicente-Serrano, S. M., Camarero, J. J. & Azorín-Molina, C. Diverse responses of forest growth to drought time-scales in the northern hemisphere. Glob. Ecol. Biogeogr. 23, 1019–1030 (2014).

    • Article
    • Google Scholar
  • 46.

    Xu, H., Wang, X. & Zhang, X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. International journal of applied earth observation and geoinformation 52, 390–402 (2016).

  • 47.

    Zipper, S. C., Qiu, J. & Kucharik, C. J. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environ. Res. Lett. 11, 094021 (2016).

  • 48.

    Zhang, Q., Kong, D., Singh, V. P. & Shi, P. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change 152, 1–11 (2017).

  • 49.

    Liu, Y., Li, L., Chen, X., Zhang, R. & Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Global and Planetary Change 169, 145–155 (2018).

  • 50.

    Ji, L. & Peters, A. J. J. R. S. O. E. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment 87, 85–98 (2003).

  • 51.

    Zewdie, W., Csaplovics, E. & Inostroza, L. J. A. G. Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability. Applied Geography 79, 167–178 (2017).

    • Article
    • Google Scholar
  • 52.

    Abuduwailil, J., Zhang, Z. Y. & Jiang, F. Q. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China. Environmental Science and Pollution Research 22, 14018–14031 (2015).

  • 53.

    Ge, Y., Abuduwaili, J., Ma, L., Wu, N. & Liu, D. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China. Atmos. Res. 178, 196–206 (2016).

    • Article
    • Google Scholar
  • 54.

    Zhang, Z., Ding, J. L., Wang, J. J. & Chen, W. Q. Observational study on salt dust aerosol optical properties using the ground-based and satellite remote sensing. Journal of Remote Sensing 21, 665–678 (2017).

    • Google Scholar
  • 55.

    Zeng, H., Wu, B., Zhu, W. & Zhang, N. A trade-off method between environment restoration and human water consumption: A case study in Ebinur Lake. Journal of cleaner production 217, 732–741 (2019).

  • 56.

    Meng, X. Y. et al. Influence of climate change and human activities on water resources in Ebinur lake in recent 60 years. Journal of Hydrology 35, 90–96 (2015).

    • Google Scholar
  • 57.

    Liu, D., Abuduwaili, J. & Wang, L. Salt dust storm in the Ebinur Lake region: its 50-year dynamic changes and response to climate changes and human activities. Nat. Hazards. 77, 1069–1080 (2015).

    • Article
    • Google Scholar
  • 58.

    Zoungrana, B. J. B., Conrad, C., Thiel, M., Amekudzi, L. K. & Da, E. D. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments 153, 66–75 (2018).

  • 59.

    Nguyen, U. N. T., Pham, L. T. H. & Dang, T. D. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environmental monitoring and assessment 191, 235 (2019).

  • 60.

    Wei, H., Chun, H., Yun, W. & Juan, G. Study on the Area Variation of Qinghai Lake Based on Long-Term Landsat 5/8 Multi-Band Remote Sensing Imagery. Advances in Earth Science 34, 346–355 (2019).

    • Google Scholar
  • 61.

    Tian, H. et al. Dynamic monitoring of the largest freshwater Lake in China using a new water index derived from high spatiotemporal resolution Sentinel-1A data. Remote Sens. 9, 521 (2017).

  • 62.

    Zhang, F. et al. The spatial and temporal dynamic changes and driving forces in the surface area of ebinur lake from 1998-2013. Acta Ecologica Sinica 35, 2848–2859 (2015).

    • Google Scholar
  • 63.

    Gautam, V. K., Gaurav, P. K., Murugan, P. & Annadurai, M. Assessment of surface water dynamics in Bangalore using WRI, NDWI, MNDWI, supervised classification and K-T transformation. Aquatic Procedia 4, 739–746 (2015).

    • Article
    • Google Scholar
  • 64.

    Borgognomondino, E., Novello, V., Lessio, A. & De, Palma, L. J. I. J. O. A. E. O. Describing the spatio-temporal variability of vines and soil by satellite-based spectral indices: A case study in Apulia (South Italy). International Journal of Applied Earth Observation 68, 42–50 (2018).

  • 65.

    Watson, C. S., King, O., Miles, E. S. & Quincey, D. J. J. R. S. O. E. Optimising NDWI supraglacial pond classification on Himalayan debris-covered glaciers. Remote Sensing of Environment 217, 414–425 (2018).

  • 66.

    Li, X. Y., Ma, Y. J., Xu, H. Y., Wang, J. H. & Zhang, D. S. Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degrad. Dev. 20, 69–83 (2009).

    • Article
    • Google Scholar
  • 67.

    Feyisa, G. L., Meilby, H., Fensholt, R. & Proud, S. R. Automated water extraction index: A new technique for surface water mapping using landsat imagery. Remote Sensing of Environment 140, 23–35 (2014).

  • 68.

    Deng, Y. et al. Spatio-temporal change of lake water extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sens. 9, 270 (2017).

  • 69.

    Acharya, T. D. Evaluation of Machine Learning Algorithms for surface Water Extraction in a Landsat 8 Scene of Nepal. SENSORS 19, 2769 (2019).

    • Article
    • Google Scholar
  • 70.

    Cai, B. F. & Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. Journal of Remote Sensing 13, 1170–1186 (2009).

    • Google Scholar
  • 71.

    Gillespie, T. W. Monitoring changes of NDVI in protected areas of southern California. Ecological Indicator 88, 485–494 (2018).

    • Article
    • Google Scholar
  • 72.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association 63, 1379–1389 (1968).

  • 73.

    Kendall, M. G. Rank Correlation Methods. London: Griffin, 1970.

  • 74.

    Nepal, S. J. J. O. H. E. R. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. Journal of Hydro-environment Research 10, 76–89 (2016).

    • Article
    • Google Scholar
  • 75.

    Fassnacht, F. E., Schiller, C., Kattenborn, T. & Qu, J. A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018. Scientific data 6, 78 (2019).

  • 76.

    Lu, L., Weng, Q., Guo, H., Feng, S. & Li, Q. Assessment of urban environmental change using multi-source remote sensing time series (2000–2016): A comparative analysis in selected megacities in Eurasia. Science of the Total Environment 684, 567–577 (2019).

  • 77.

    Mann, H. B. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 245–259 (1945).

  • 78.

    Kendall, M. G. Rank correlation measures. Charles Griffin, London 202, 15 (1975).

    • Google Scholar
  • 79.

    Attaurrahman, D. M. J. C. D. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Climate Dynamics 48, 783–797 (2017).

  • 80.

    Liu, S. et al. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Scientific reports 7, 4182 (2017).

  • 81.

    Thornthwaite, C. W. J. G. R. An approach toward a rational classification of climate. Geographical Review Abbreviation 38, 55–94 (1948).

    • Article
    • Google Scholar
  • 82.

    Lorenzolacruz, J. et al. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology 386, 13–26 (2010).


  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters