in

Not all cicadas increase thermal tolerance in response to a temperature gradient in metropolitan Seoul

  • 1.

    Fonseca, P. & Revez, M. A. Temperature dependence of cicada songs (Homoptera, Cicadoidea). Journal of comparative Physiology A 187, 971–976 (2002).

  • 2.

    Moriyama, M. & Numata, H. Diapause and prolonged development in the embryo and their ecological significance in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata. Journal of insect physiology 54, 1487–1494 (2008).

  • 3.

    Toolson, E. C. Comparative thermal physiological ecology of syntopic populations of Cacama valvata and Tibicen bifidus (Homoptera: Cicadidae): modeling fitness consequences of temperature variation. American Zoologist 38, 568–582 (1998).

    • Article
    • Google Scholar
  • 4.

    Sanborn, A. Cicada thermoregulation (Hemiptera, Cicadoidea). (na, 2002).

  • 5.

    Sanborn, A. F. & Maté, S. Thermoregulation and the effect of body temperature on call temporal parameters in the cicada Diceroprocta olympusa (Homoptera: Cicadidae). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 125, 141–148 (2000).

  • 6.

    Sato, Y. & Sato, S. Spring temperature predicts the long-term molting phenology of two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata (Hemiptera: Cicadidae). Annals of the Entomological Society of America 108, 494–500, https://doi.org/10.1093/aesa/sav036 (2015).

    • Article
    • Google Scholar
  • 7.

    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological applications 15, 2084–2096 (2005).

    • Article
    • Google Scholar
  • 8.

    Dale, A. G. & Frank, S. D. The effects of urban warming on herbivore abundance and street tree condition. PloS one 9, e102996 (2014).

  • 9.

    Laws, A. N. & Belovsky, G. E. How will species respond to climate change? Examining the effects of temperature and population density on an herbivorous insect. Environmental Entomology 39, 312–319 (2010).

  • 10.

    Rueda, L., Patel, K., Axtell, R. & Stinner, R. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of medical entomology 27, 892–898 (1990).

  • 11.

    Heath, J. E. Temperature responses of the periodical “17-year” cicada, Magicicada cassini (Homoptera, Cicadidae). American Midland Naturalist, 64–76 (1967).

    • Article
    • Google Scholar
  • 12.

    Oke, T. R. City size and the urban heat island. Atmospheric Environment (1967) 7, 769–779 (1973).

    • Article
    • Google Scholar
  • 13.

    Nowak, D. J. & Dwyer, J. F. In Handbook of urban and community forestry in the Northeast 11–25 (Springer, 2000).

  • 14.

    Oke, T. In Wind climate in cities (eds. Cermark, J. E., Davenport, A. G., Plate, E. J. & Viegas, D. X.) 81–107 (Springer, 1995).

  • 15.

    Hart, M. A. & Sailor, D. J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and applied climatology 95, 397–406 (2009).

  • 16.

    Santamouris, M. Heat island research in Europe: the state of the art. Advances in building energy research 1, 123–150 (2007).

    • Article
    • Google Scholar
  • 17.

    Ryu, Y.-H. & Baik, J.-J. Quantitative analysis of factors contributing to urban heat island intensity. Journal of Applied Meteorology and Climatology 51, 842–854 (2012).

  • 18.

    Agrawal, M. In Urban Ecology 603–607 (Springer, 1998).

  • 19.

    Stringer, L. D., Stephens, A. E., Suckling, D. M. & Charles, J. G. Ant dominance in urban areas. Urban Ecosystems 12, 503–514 (2009).

    • Article
    • Google Scholar
  • 20.

    Willigalla, C. & Fartmann, T. Patterns in the diversity of dragonflies (Odonata) in cities across Central Europe. European Journal of Entomology 109, 235–245 (2012).

    • Article
    • Google Scholar
  • 21.

    White, J. A. & Lloyd, M. Growth rates of 17 and 13-year periodical cicadas. American Midland Naturalist, 127–143 (1975).

  • 22.

    Koyama, T. et al. Geographic body size variation in the periodical cicadas Magicicada: implications for life cycle divergence and local adaptation. Journal of evolutionary biology 28, 1270–1277 (2015).

  • 23.

    Karban, R. Evolution of prolonged development: a life table analysis for periodical cicadas. The American Naturalist 150, 446–461 (1997).

  • 24.

    Karban, R. Sexual selection, body size and sex-related mortality in the cicada Magicicada cassini. American Midland Naturalist, 324–330 (1983).

    • Article
    • Google Scholar
  • 25.

    Smith, D. M., Kelly, J. F. & Finch, D. M. Cicada emergence in southwestern riparian forest: influences of wildfire and vegetation composition. Ecological Applications 16, 1608–1618 (2006).

  • 26.

    Saisho, Y. Mathematical observations on the relation between eclosion periods and the copulation rate of cicadas. Mathematical biosciences and engineering: MBE 7, 443–453 (2010).

  • 27.

    Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biology letters 13, 20170125 (2017).

  • 28.

    Schowalter, T. D. Insect ecology: an ecosystem approach. (Academic Press, 2016).

  • 29.

    Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B 285, 20180036 (2018).

  • 30.

    Piano, E. et al. Urbanization drives community shifts towards thermophilic and dispersive species at local and landscape scales. Global change biology (2017).

  • 31.

    Diamond, S. E. et al. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 2305–2312 (2012).

  • 32.

    Stuble, K. L. et al. Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and evolution 3, 482–491 (2013).

  • 33.

    Angilletta, M. J. et al. Urban physiology: city ants possess high heat tolerance. PLoS One 2, e258 (2007).

  • 34.

    Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biological Journal of the Linnean Society 121, 248–257 (2017).

    • Article
    • Google Scholar
  • 35.

    Lee, Y. J. Revised synonymic list of Cicadidae (Insecta: Hemiptera) from the Korean Peninsula, with the description of a new species and some taxonomic remarks. Proceedings of the Biological Society of Washington 121, 445–467 (2008).

  • 36.

    Kim, T. E., Oh, S.-Y., Chang, E. & Jang, Y. Host availability hypothesis: complex interactions with abiotic factors and predators may best explain population densities of cicada species. Animal Cells and Systems 18, 143–153 (2014).

    • Article
    • Google Scholar
  • 37.

    Nguyen, H. Q., Andersen, D. K., Kim, Y. & Jang, Y. Urban heat island effect on cicada densities in metropolitan Seoul. PeerJ 6, e4238 (2018).

  • 38.

    Lobser, S. & Cohen, W. MODIS tasselled cap: land cover characteristics expressed through transformed MODIS data. International Journal of Remote Sensing 28, 5079–5101 (2007).

  • 39.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society 25, 1965–1978 (2005).

  • 40.

    Tzavali, A., Paravantis, J. P., Mihalakakou, G., Fotiadi, A. & Stigka, E. Urban heat island intensity: a literature review. Fresenius Environmental Bulletin 24, 4535–4554 (2015).

    • Google Scholar
  • 41.

    Sanborn, A. F. & Phillips, P. K. Thermal responses of the Diceroprocta cinctifera species group (Homoptera: Cicadidae). The Southwestern Naturalist, 136–139 (1996).

  • 42.

    Sanborn, A. F. & Heath, J. Thermal responses of periodical cicadas: within and between brood parity (Hemiptera: Cicadidae: Magicicada spp.). Open Access Insect Physiol 1, 13–20 (2009).

    • Article
    • Google Scholar
  • 43.

    Sanborn, A. F., Heath, J. E., Heath, M. S. & Phillips, P. K. Thermal adaptation in North American cicadas (Hemiptera: Cicadidae). Journal of thermal biology 69, v–xviii (2017).

  • 44.

    Sanborn, A. F., Phillips, P. K., Heath, J. E. & Heath, M. S. Influence of altitude, habitat and microhabitat on thermal adaptation of cicadas from Southwest Texas (Hemiptera: Cicadidae). Journal of Thermal Biology 36, 386–389 (2011).

    • Article
    • Google Scholar
  • 45.

    Sanborn, A. F., Heath, J. E. & Heath, M. S. Thermoregulation and evaporative cooling in the cicada Okanagodes gracilis (Homoptera: Cicadidae). Comparative biochemistry and physiology. Comparative physiology 102, 751–757 (1992).

  • 46.

    Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and environmental physiology of insects. Vol. 3 (Oxford University Press, 2012).

  • 47.

    Toolson, E. C. Water profligacy as an adaptation to hot deserts: water loss rates and evaporative cooling in the Sonoran Desert cicada, Diceroprocta apache (Homoptera: Cicadidae). Physiological Zoology 60, 379–385 (1987).

    • Article
    • Google Scholar
  • 48.

    Rao, C. R. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 329–358 (1964).

  • 49.

    Oksanen, J. Multivariate analysis of ecological communities in R: vegan tutorial. R Doc 43, 11–12 (2015).

    • Google Scholar
  • 50.

    Sanborn, A. F., Phillips, P. K., Heath, J. E. & Heath, M. S. Comparative thermal adaptation in cicadas (Hemiptera: Cicadidae) inhabiting Mediterranean ecosystems. Journal of Thermal Biology 36, 150–155 (2011).

    • Article
    • Google Scholar
  • 51.

    Lee, Y. A list of Cicadidae (Homoptera) in Korea. Cicada 15, 1–16 (1999).

    • Google Scholar
  • 52.

    Sanborn, A. F., Heath, J. E., Phillips, P. K., Heath, M. S. & Noriega, F. G. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae). PLoS One 6, e29368 (2011).

  • 53.

    Sanborn, A. Comparative thermoregulation of sympatric endothermic and ectothermic cicadas (Homoptera: Cicadidae: Tibicen winnemanna and Tibicen chloromerus). Journal of Comparative Physiology A 186, 551–556 (2000).

  • 54.

    Van Voorhies, W. A. On the adaptive nature of Bergmann size clines: a reply to Mousseau, Partridge and Coyne. Evolution 51, 635–640 (1997).

  • 55.

    Crill, W. D., Huey, R. B. & Gilchrist, G. W. Within-and between‐generation effects of temperature on the morphology and physiology of Drosophila melanogaster. Evolution 50, 1205–1218 (1996).

  • 56.

    Ray, C. The application of Bergmann’s and Allen’s rules to the poikilotherms. Journal of morphology 106, 85–108 (1960).

  • 57.

    Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PloS one 12, e0173844 (2017).

  • 58.

    Musolin, D. L., Tougou, D. & Fujisaki, K. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Global Change Biology 16, 73–87 (2010).

  • 59.

    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evolutionary Ecology Research 10, 251–268 (2008).

    • Google Scholar
  • 60.

    Brans, K. I. et al. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size. Global change biology 23, 5218–5227 (2017).

  • 61.

    Geerts, A. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Climate Change 5, 665 (2015).

  • 62.

    Oberg, E., Del Toro, I. & Pelini, S. Characterization of the thermal tolerances of forest ants of New England. Insectes sociaux 59, 167–174 (2012).

    • Article
    • Google Scholar
  • 63.

    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). Journal of Animal Ecology 84, 1322–1330 (2015).

  • 64.

    Bennet-Clark, H. & Young, D. The scaling of song frequency in cicadas. Journal of Experimental Biology 191, 291–294 (1994).

  • 65.

    Sueur, J. & Aubin, T. Specificity of cicada calling songs in the genus Tibicina (Hemiptera: Cicadidae). Systematic Entomology 28, 481–492 (2003).

    • Article
    • Google Scholar
  • 66.

    Shieh, B.-S., Liang, S.-H., Liao, C.-Y. & Chiu, Y.-W. Song frequency correlates with latitude and individual body size in the cicada Mogannia formosana Matsumura (Hemiptera: Cicadidae). acta ethologica 20, 147–155 (2017).

    • Article
    • Google Scholar
  • 67.

    Sanborn, A. F. Body temperature and the acoustic behavior of the cicada Tibicen winnemanna (Homoptera: Cicadidae). Journal of insect behavior 10, 257–264 (1997).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    For cheaper solar cells, thinner really is better

    Testing the waters