in

Intraspecific differences in seed dispersal caused by differences in social rank and mediated by food availability

  • 1.

    Kitamura, S. et al. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia 133, 559–572 (2002).

  • 2.

    Carlo, T. A. Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86, 2440–2449 (2005).

    • Article
    • Google Scholar
  • 3.

    Prasad, S. & Sukumar, R. Context-dependency of a complex fruit-frugivore mutualism: temporal variation in crop size and neighborhood effects. Oikos 119, 514–523 (2010).

    • Article
    • Google Scholar
  • 4.

    Donatti, C. I. et al. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Let. 14, 773–781 (2011).

    • Article
    • Google Scholar
  • 5.

    Snell, R. S. et al. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution, and global change. AoB Plants 11, plz016, https://doi.org/10.1093/aobpla/plz016 (2019).

  • 6.

    González-Varo, J. P. & Traveset, A. The labile limits of forbidden interactions. Trend. Ecol. Evol. 31, 700–710 (2016).

    • Article
    • Google Scholar
  • 7.

    Zwolak, R. How intraspecific variation in seed-dispersing animals matters for plants. Biol. Rev. 93, 897–913 (2018).

    • Article
    • Google Scholar
  • 8.

    Larsen, H. & Burns, K. C. Seed dispersal effectiveness increases with body size in New Zealand alpine weta (Deinacrida connectens). Aust. Ecol. 37, 800–806 (2012).

    • Article
    • Google Scholar
  • 9.

    Calvino-Cancela, M. & Rubido-Bara, M. Effects of seed passage through slugs on germination. Plant Ecol. 213, 663–673 (2012).

    • Article
    • Google Scholar
  • 10.

    Anderson, J. Y., Nuttle, T., Saldaña Rojas, J. S., Pendergast, T. H. & Flecker, A. S. Extremely long-distance seed dispersal by an overfished Amazonian frugivore. Proc. Royal Soc. B. 278, 3329–3335 (2011).

    • Article
    • Google Scholar
  • 11.

    Correa, S. B. et al. Overfishing disrupts an ancient mutualism between frugivorous fishes and plants in Neotropical wetlands. Biol. Cons. 191, 159–167 (2015).

    • Article
    • Google Scholar
  • 12.

    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: effects of body size. Oecologia 140, 160–168 (2004).

  • 13.

    Tulipani, D. C. & Lipcius, R. N. Evidence of eelgrass (Zostera marina) seed dispersal by northern diamondback terrapin (Malaclemys terrapin terrapin) in lower Chesapeake Bay. PLoS ONE 9, e103346, https://doi.org/10.1371/journal.pone.0103346 (2014).

  • 14.

    Jung, R. E. Individual variation in fruit choice by American robins (Turdus migratorius). The Auk 109, 98–111 (1992).

    • Article
    • Google Scholar
  • 15.

    Krijger, C. L., Opdam, M., Théry, M. & Bongers, F. Courtship behaviour of manakins and seed bank composition in a French Guianan rain forest. J. Trop. Ecol. 13, 631–636 (1997).

    • Article
    • Google Scholar
  • 16.

    Kaplin, B. A. & Moermond, T. C. Variation in seed handling by two species of forest monkeys in Rwanda. Am. J. Primatol. 45, 83–101 (1998).

  • 17.

    Clarke, M. F. & Kramer, D. L. Scatter-hoarding by a larder-hoarding rodent: intraspecific variation in the hoarding behaviour of the eastern chipmunk, Tamias striatus. Anim. Behav. 48, 299–308 (1994).

    • Article
    • Google Scholar
  • 18.

    Dochtermann, N. A. & Jenkins, S. H. Behavioural syndromes in Merriam’s kangaroo rats (Dipodomys merriami): a test of competing hypotheses. Proc. Royal Soc. B 274, 2343–2349 (2007).

    • Article
    • Google Scholar
  • 19.

    Jadeja, S., Prasad, S., Quader, S. & Isvaran, K. Antelope mating strategies facilitate invasion of grasslands by a woody weed. Oikos 122, 1441–1452 (2013).

    • Google Scholar
  • 20.

    Vogel, E. R., Munch, S. B. & Janson, C. H. Understanding escalated aggression over food resources in white-faced capuchin monkeys. Anim. Behav. 74, 71–80 (2007).

    • Article
    • Google Scholar
  • 21.

    Schupp, E. W. Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107, 15–29 (1993).

    • Google Scholar
  • 22.

    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).

    • Article
    • Google Scholar
  • 23.

    Tsuji, Y., Fujita, S., Sugiura, H., Saito, C. & Takatsuki, S. Long-term variation in fruiting and the food habits of wild Japanese macaques on Kinkazan Island, northern Japan. Am. J. Primatol. 68, 1068–1080 (2006).

    • Article
    • Google Scholar
  • 24.

    Suwanvecho, U. et al. High interannual variation in the diet of a tropical forest frugivore (Hylobates lar). Biotropica 50, 346–356 (2017).

    • Article
    • Google Scholar
  • 25.

    Tsuji, Y. Regional, temporal, and inter-individual variation in the feeding ecology of Japanese macaques in The Japanese macaques (eds. Nakagawa, N., Nakamichi, M. & Sugiura, H.) 95–123 (Springer, 2010).

  • 26.

    Tsuji, Y., Ito, T. Y., Wada, K. & Watanabe, K. Spatial patterns in the diet of the Japanese macaque Macaca fuscata and their environmental determinants. Mamm. Rev. 45, 227–238 (2015).

    • Article
    • Google Scholar
  • 27.

    Tsuji, Y. & Takatsuki, S. Inter-annual variation in nut abundance is related to agonistic interactions of foraging female Japanese macaques (Macaca fuscata). Int. J. Primatol. 33, 489–512 (2012).

    • Article
    • Google Scholar
  • 28.

    Otani, T. Seed dispersal by Japanese macaques in The Japanese macaques (Eds Nakagawa, N., Nakamichi, M. & Sugiura, H.) 129–142 (Springer, 2010).

  • 29.

    Tsuji, Y., Sato, K. & Sato, Y. The role of Japanese macaques (Macaca fuscata) as endozoochorous seed dispersers on Kinkazan Island, northern Japan. Mammal. Biol. 76, 525–533 (2011).

    • Article
    • Google Scholar
  • 30.

    Saito, C. Dominance and feeding success in female Japanese macaques, Macaca fuscata: effects of food patch size and inter-patch distance. Anim. Behav. 51, 967–980 (1996).

    • Article
    • Google Scholar
  • 31.

    Kazahari, N. & Agetsuma, N. Mechanisms determining relationships between feeding group size and foraging success in food patch use by Japanese macaques Macaca fuscata. Behaviour 147, 1481–1500 (2010).

    • Article
    • Google Scholar
  • 32.

    Soumah, A. G. & Yokota, N. Female rank and feeding strategies in a free-ranging provisioned troop of Japanese macaques. Folia Primatol. 57, 191–200 (1991).

    • Article
    • Google Scholar
  • 33.

    Mori, A. Rank and age-related feeding strategy observed through field experiments in the Koshima group of Japanese macaques. Primates 36, 11–26 (1995).

  • 34.

    Tsuji, Y. & Takatsuki, S. Effects of yearly change in nut fruiting on autumn home range use of Japanese macaques on Kinkazan Island, northern Japan. Int. J. Primatol. 30, 169–181 (2009).

    • Article
    • Google Scholar
  • 35.

    Schupp, E. W., Jordano, P. & Gómez, J. M. Seed dispersal effectiveness revisited: a conceptual review. New Phytol. 188, 333–353 (2010).

    • Article
    • Google Scholar
  • 36.

    Stevenson, P. A. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. 50, 275–289 (2000).

  • 37.

    Yasaka, M., Terazawa, K., Koyama, H. & Kon, H. Masting behavior of Fagus crenata in northern Japan: spatial synchrony and pre-dispersal seed predation. For. Ecol. Manag. 184, 277–284 (2003).

    • Article
    • Google Scholar
  • 38.

    Suzuki, W., Osumi, K. & Masaki, T. Mast seeding and its spatial scale in Fagus crenata in northern Japan. For. Ecol. Manag. 205, 105–116 (2005).

    • Article
    • Google Scholar
  • 39.

    Yamagiwa, J. & Hill, D. A. Intraspecific variation in the social organization of Japanese macaques: past and present scope of field studies in natural habitats. Primates 39, 257–273 (1998).

    • Article
    • Google Scholar
  • 40.

    McConkey, K. R. & O’Farrill, G. Cryptic function loss in animal populations. Trend. Ecol. Evol. 30, 182–189 (2015).

    • Article
    • Google Scholar
  • 41.

    McConkey, K. R. & O’Farrill, G. Loss of seed dispersal before the loss of seed dispersers. Biol. Cons. 201, 38–49 (2016).

    • Article
    • Google Scholar
  • 42.

    Ikeda, H. Population changes and ranging behaviour of wild Japanese monkeys at Mt. Kawaradake in Kyushu, Japan. Primates 23, 338–347 (1982).

    • Article
    • Google Scholar
  • 43.

    Yamagiwa, J. Socio-sexual factors of troop fission in wild Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates 26, 105–120 (1995).

    • Article
    • Google Scholar
  • 44.

    Sengupta, A., McConkey, K. R. & Radhakrishna, S. Primates, provisioning and plants: impacts of human cultural behaviours on primate ecological functions. PLoS ONE 10, e0140961, https://doi.org/10.1371/journal.pone.0140961 (2015).

  • 45.

    Perea, R., Delibes, M., Polko, M., Suarez-Esteban, A. & Fedriani, J. M. Context-dependent fruit–frugivore interactions: partner identities and spatio-temporal variations. Oikos 122, 943–951 (2013).

    • Article
    • Google Scholar
  • 46.

    Pires, L. P. & Melo, C. Individual-resource networks reveal distinct fruit preferences of selective individuals from a generalist population of the Helmeted Manakin. Ibis. https://doi.org/10.1111/ibi.12794 (2019).

    • Article
    • Google Scholar
  • 47.

    Strier, K. Primate behavioral ecology fifth edition (Routledge 2015).

  • 48.

    Kawazoe, T. Association patterns and affiliative relationships outside a troop in wild male Japanese macaques, Macaca fuscata, during the non-mating season. Behaviour 153, 69–89 (2016).

    • Article
    • Google Scholar
  • 49.

    Izawa, K. Research on wild Japanese macaques (Dobutsusha, 2009).

  • 50.

    Tsuji, Y. Inter-annual variation in characteristics of endozoochory by wild Japanese macaques. PLoS ONE 9, e108155, https://doi.org/10.1371/journal.pone.0108155 (2014).

  • 51.

    Kunz, B. K. & Linsenmair, K. E. The role of the olive baboon (Papio anubis, Cercopithecidae) as seed disperser in a savanna-forest mosaic of West Africa. J. Trop. Ecol. 24, 235–246 (2008).

    • Article
    • Google Scholar
  • 52.

    R Development Core Team. R: a language and environment for statistical computing. Version 3.3.2., R Foundation for Statistical Computing, Vienna, Austria (2016).


  • Source: Ecology - nature.com

    Powering the planet

    What is the future of lighting waste?