in

Between roost contact is essential for maintenance of European bat lyssavirus type-2 in Myotis daubentonii bat reservoir: ‘The Swarming Hypothesis’

  • 1.

    Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19, 531–545, doi:19/3/531 (2006).

  • 2.

    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proceedings. Biol. sciences/R. Soc. 280, 20122753, https://doi.org/10.1098/rspb.2012.2753 (2013).

    • Article
    • Google Scholar
  • 3.

    Plowright, R. K. et al. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations. PLoS neglected tropical Dis. 10, e0004796, https://doi.org/10.1371/journal.pntd.0004796 (2016).

    • Article
    • Google Scholar
  • 4.

    ICTV. ICTV Online 9th Report, https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/ (2011).

  • 5.

    Fooks, A. R. et al. Current status of rabies and prospects for elimination. Lancet, https://doi.org/10.1016/S0140-6736(13)62707-5 (2014).

    • Article
    • Google Scholar
  • 6.

    Dyer, J. L. et al. Rabies surveillance in the United States during 2013. J. Am. Vet. Med. Assoc. 245, 1111–1123, https://doi.org/10.2460/javma.245.10.1111 (2014).

  • 7.

    Monroe, B. P. et al. Rabies surveillance in the United States during 2014. J. Am. Vet. Med. Assoc. 248, 777–788, https://doi.org/10.2460/javma.248.7.777 (2016).

  • 8.

    Nolden, T. et al. Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus. J. Gen. Virol. 95, 1647–1653 (2014).

  • 9.

    Evans, J. S., Horton, D. L., Easton, A. J., Fooks, A. R. & Banyard, A. C. Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine 30, 7447–7454, https://doi.org/10.1016/j.vaccine.2012.10.015 (2012).

  • 10.

    Constantine, D. G. An updated list of rabies-infected bats in North America. J. Wildl. Dis. 15, 347–349 (1979).

  • 11.

    George, D. B. et al. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl Acad. Sci. USA 108, 10208–10213, https://doi.org/10.1073/pnas.1010875108 (2011).

  • 12.

    Sadler, W. W. & Enright, J. B. Effect of metabolic level of the host upon the pathogenesis of rabies in the bat. J. Infect. Dis. 105, 267–273 (1959).

  • 13.

    Sulkin, S. E., Allen, R., Sims, R., Krutzsch, P. H. & Kim, C. Studies on the Pathogenesis of Rabies in Insectivorous Bats: Ii. Influence of Environmental Temperature. J. Exp. Med. 112, 595–617 (1960).

  • 14.

    Schatz, J. et al. Bat Rabies Surveillance in Europe. Zoonoses public. health 60, 22–34, https://doi.org/10.1111/zph.12002 (2013).

  • 15.

    Lopez-Roig, M., Bourhy, H., Lavenir, R. & Serra-Cobo, J. Seroprevalence dynamics of European bat lyssavirus type 1 in a multispecies bat colony. Viruses 6, 3386–3399, https://doi.org/10.3390/v6093386 (2014).

  • 16.

    Serra-Cobo, J. et al. Ecological factors associated with European bat lyssavirus seroprevalence in spanish bats. PLoS one 8, e64467, https://doi.org/10.1371/journal.pone.0064467 (2013).

  • 17.

    Amengual, B., Bourhy, H., Lopez-Roig, M. & Serra-Cobo, J. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One 2, e566, https://doi.org/10.1371/journal.pone.0000566 (2007).

  • 18.

    Pons-Salort, M. et al. Insights into persistence mechanisms of a zoonotic virus in bat colonies using a multispecies metapopulation model. PLoS one 9, e95610, https://doi.org/10.1371/journal.pone.0095610 (2014).

  • 19.

    Colombi, D. et al. Mechanisms for European Bat Lyssavirus subtype 1 persistence in non-synanthropic bats: insights from a modeling study. bioRxiv (2018).

  • 20.

    McElhinney, L. M. et al. Molecular epidemiology of bat lyssaviruses in europe. Zoonoses public. health 60, 35–45, https://doi.org/10.1111/zph.12003 (2013).

  • 21.

    Johnson, N. et al. Two EBLV-2 infected Daubenton’s bats detected in the north of England. Vet. Rec. 179, 311–312, https://doi.org/10.1136/vr.i5121 (2016).

  • 22.

    McElhinney, L. M. et al. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int J Mol Sci 19, https://doi.org/10.3390/ijms19010156 (2018).

    • Article
    • Google Scholar
  • 23.

    Bogdanowicz, W. Geographic Variation and Taxonomy of Daubenton’s Bat, Myotis daubentoni in Europe. J. Mammalogy 71, 205–218, https://doi.org/10.2307/1382169 (1990).

    • Article
    • Google Scholar
  • 24.

    Smith, G. C. et al. Bat population genetics and Lyssavirus presence in Great Britain. Epidemiol. Infect. 139, 1463–1469, https://doi.org/10.1017/S0950268810002876 (2011).

  • 25.

    August, T. A., Nunn, M. A., Fensome, A. G., Linton, D. M. & Mathews, F. Sympatric woodland Myotis bats form tight-knit social groups with exclusive roost home ranges. PLoS one 9, e112225, https://doi.org/10.1371/journal.pone.0112225 (2014).

  • 26.

    Senior, P., Butlin, R. K. & Altringham, J. D. Sex and segregation in temperate bats. Proceedings. Biol. sciences/R. Soc. 272, 2467–2473, https://doi.org/10.1098/rspb.2005.3237 (2005).

    • Article
    • Google Scholar
  • 27.

    Angell, R. L., Butlin, R. K. & Altringham, J. D. Sexual segregation and flexible mating patterns in temperate bats. PLoS one 8, e54194, https://doi.org/10.1371/journal.pone.0054194 (2013).

  • 28.

    Ngamprasertwong, T., Piertney, S. B., Mackie, I. & Racey, P. A. Roosting Habits of Daubenton’s Bat (Myotis daubentonii) during Reproduction Differs between Adjacent River Valleys. Acta Chiropterologica 16, 337–347, https://doi.org/10.3161/150811014X687297 (2014).

    • Article
    • Google Scholar
  • 29.

    Rivers, N. M., Butlin, R. K. & Altringham, J. D. Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol. Ecol. 14, 4299–4312, https://doi.org/10.1111/j.1365-294X.2005.02748.x (2005).

  • 30.

    Parsons, K. N., Jones, G. & Greenaway, F. Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. J. Zool. 261, 257–264, https://doi.org/10.1017/S0952836903004199 (2003).

    • Article
    • Google Scholar
  • 31.

    Lumio, J. et al. Human rabies of bat origin in Europe. Lancet 1, 378, doi:S0140-6736(86)92336-6 (1986).

  • 32.

    Fooks, A. R. et al. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J. Med. Virol. 71, 281–289, https://doi.org/10.1002/jmv.10481 (2003).

  • 33.

    Brookes, S. M. & Fooks, A. R. Occupational lyssavirus risks and post-vaccination monitoring. Dev. Biol. 125, 165–173 (2006).

    • CAS
    • Google Scholar
  • 34.

    Gilbert, A. T. et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. Ecohealth 10, 298–313, https://doi.org/10.1007/s10393-013-0856-0 (2013).

  • 35.

    Johnson, N. et al. Experimental study of European bat lyssavirus type-2 infection in Daubenton’s bats (Myotis daubentonii). J Gen Virol 89, 2662–2672, doi:89/11/2662 (2008).

  • 36.

    Banyard, A. C. et al. Repeated detection of European bat lyssavirus type 2 in dead bats found at a single roost site in the UK. Arch. Virol. 154, 1847–1850, https://doi.org/10.1007/s00705-009-0504-8 (2009).

  • 37.

    Johnson, N., Phillpotts, R. & Fooks, A. R. Airborne transmission of lyssaviruses. J Med Microbiol 55, 785-790, doi:55/6/785 (2006).

  • 38.

    Davis, A. D., Rudd, R. J. & Bowen, R. A. Effects of aerosolized rabies virus exposure on bats and mice. The Journal of infectious diseases 195, 1144-1150, doi:JID37404 (2007).

  • 39.

    Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215, https://doi.org/10.4269/ajtmh.2012.11-0689 (2012).

  • 40.

    Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. reviews. Microbiology 6, 477–487, https://doi.org/10.1038/nrmicro1845 (2008).

  • 41.

    Toni, T., Jovanovic, G., Huvet, M., Buck, M. & Stumpf, M. P. From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli. BMC Syst. Biol. 5, 69, https://doi.org/10.1186/1752-0509-5-69 (2011).

  • 42.

    Streicker, D. G., Franka, R., Jackson, F. R. & Rupprecht, C. E. Anthropogenic roost switching and rabies virus dynamics in house-roosting big brown bats. Vector Borne Zoonotic Dis. 13, 498–504, https://doi.org/10.1089/vbz.2012.1113 (2013).

  • 43.

    Barrett, L. G., Thrall, P. H., Burdon, J. J. & Linde, C. C. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 23, 678–685, https://doi.org/10.1016/j.tree.2008.06.017 (2008).

  • 44.

    Wise, E. L. et al. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol. Infect. 145, 2445–2457, https://doi.org/10.1017/S0950268817001455 (2017).

  • 45.

    Jackson, A. C. Rabies: new insights into pathogenesis and treatment. Curr. Opin. Neurol. 19(267–270), 7 (2006).

    • Google Scholar
  • 46.

    Freuling, C. M. et al. Experimental infection of Serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a (EBLV-1a). J Gen Virol, doi:vir.0.011510-0 (2009).

  • 47.

    Botvinkin, A. D., Kuz’min, I. V. & Chernov, S. M. [The experimental infection of bats with lyssavirus serotypes 1 and 4]. Vopr. Virusol. 37, 215–218 (1992).

  • 48.

    Davis, A. D. et al. Overwintering of Rabies Virus in Silver Haired Bats (Lasionycteris noctivagans). PLoS one 11, e0155542, https://doi.org/10.1371/journal.pone.0155542 (2016).

  • 49.

    Canale, C. I., Perret, M. & Henry, P. Y. Torpor use during gestation and lactation in a primate. Naturwissenschaften 99, 159–163, https://doi.org/10.1007/s00114-011-0872-2 (2012).

  • 50.

    Lilley, T. M. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proceedings. Biological sciences/The Royal Society 284, https://doi.org/10.1098/rspb.2016.2232 (2017).

    • Article
    • Google Scholar
  • 51.

    O’Shea, T. J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745, https://doi.org/10.3201/eid2005.130539 (2014).

  • 52.

    Glover, A. M. & Altringham, J. D. Cave selection and use by swarming bat species. Biol. Conserv. 141, 1493–1504, https://doi.org/10.1016/j.biocon.2008.03.012 (2008).

    • Article
    • Google Scholar
  • 53.

    van Schaik, J. & Kerth, G. Host social organization and mating system shape parasite transmission opportunities in three European bat species. Parasitol. Res. 116, 589–599, https://doi.org/10.1007/s00436-016-5323-8 (2017).

  • 54.

    Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl Acad. Sci. USA 110, 20837–20842, https://doi.org/10.1073/pnas.1308817110 (2013).

  • 55.

    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl Acad. Sci. U S Am. 113, 10926–10931, https://doi.org/10.1073/pnas.1606587113 (2016).

  • 56.

    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings. Biol. sciences/R. Soc. 279, 3384–3392, https://doi.org/10.1098/rspb.2012.0538 (2012).

    • Article
    • Google Scholar
  • 57.

    Begon, M. et al. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol. Infect. 129, 147–153 (2002).


  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries