in

Phage diversity, genomics and phylogeny

  • 1.

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    • Google Scholar
  • 2.

    Nigro, O. D. et al. Viruses in the oceanic basement. mBio 8, 1–15 (2017).

    • Google Scholar
  • 3.

    Appelt, S. et al. Viruses in a 14th-century coprolite. Appl. Environ. Microbiol. 80, 2648–2655 (2014).

    • Google Scholar
  • 4.

    Kim, M.-S. & Bae, J.-W. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 12, 1127–1141 (2018).

    • Google Scholar
  • 5.

    Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693–700 (2019).

    • Google Scholar
  • 6.

    Brum, J. R., Schenck, R. O. & Sullivan, M. B. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 7, 1738–1751 (2013).

    • Google Scholar
  • 7.

    Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).

    • Google Scholar
  • 8.

    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    • Google Scholar
  • 9.

    Roux, S. et al. Cryptic inoviruses are pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019). This study uses a machine learning approach to identify 10,295 previously uncharacterized inoviruses from microbial genomes and metagenomes.

    • Google Scholar
  • 10.

    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    • Google Scholar
  • 11.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1–15 (2019).

    • Google Scholar
  • 12.

    Ackermann, H. W. Phage classification and characterization. Methods Mol. Biol. 501, 127–140 (2009).

    • Google Scholar
  • 13.

    Ackermann, H. W. 5500 Phages examined in the electron microscope. Arch. Virol. 152, 227–243 (2007).

    • Google Scholar
  • 14.

    Adams, M. J. et al. 50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Arch. Virol. 162, 1441–1446 (2017).

    • Google Scholar
  • 15.

    Adriaenssens, E. & Brister, J. R. How to name and classify your phage: an informal guide. Viruses 9, 70 (2017).

    • Google Scholar
  • 16.

    Barylski, J. et al. Analysis of Spounaviruses as a case study for the overdue reclassification of tailed phages. Syst. Biol. 69, 110–123 (2019).

    • Google Scholar
  • 17.

    Adriaenssens, E. M. et al. A suggested new bacteriophage genus: ‘Viunalikevirus’. Arch. Virol. 157, 2035–2046 (2012).

    • Google Scholar
  • 18.

    Hua, J. et al. Capsids and genomes of jumbo-sized bacteriophages reveal the evolutionary reach of the HK97 fold. mBio 8, e01579-17 (2017).

    • Google Scholar
  • 19.

    Duda, R. L. & Teschke, C. M. The amazing HK97 fold: versatile results of modest differences. Curr. Opin. Virol. 36, 9–16 (2019).

    • Google Scholar
  • 20.

    Agirrezabala, X. et al. Structure of the connector of bacteriophage T7 at 8A resolution: structural homologies of a basic component of a DNA translocating machinery. J. Mol. Biol. 347, 895–902 (2005).

    • Google Scholar
  • 21.

    Lebedev, A. A. et al. Structural framework for DNA translocation via the viral portal protein. EMBO J. 26, 1984–1994 (2007).

    • Google Scholar
  • 22.

    Lokareddy, R. K. et al. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation. Nat. Commun. 8, 14310 (2017).

    • Google Scholar
  • 23.

    Cardarelli, L. et al. The crystal structure of bacteriophage HK97 gp6: defining a large family of head–tail connector proteins. J. Mol. Biol. 395, 754–768 (2010). This study shows the evolutionary relationships that can exist among diverse groups of phage proteins.

    • Google Scholar
  • 24.

    Olia, A. S., Prevelige Jr., P. E., Johnson, J. E. & Cingolani, G. Three-dimensional structure of a viral genome-delivery portal vertex. Nat. Struct. Mol. Biol. 18, 597–603 (2011).

    • Google Scholar
  • 25.

    Arnaud, C.-A. et al. Bacteriophage T5 tail tube structure suggests a trigger mechanism for Siphoviridae DNA ejection. Nat. Commun. 8, 1953 (2017).

    • Google Scholar
  • 26.

    Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419–429 (2004).

    • Google Scholar
  • 27.

    Cardarelli, L. et al. Phages have adapted the same protein fold to fulfill multiple functions in virion assembly. Proc. Natl Acad. Sci. USA 107, 14384–14389 (2010).

    • Google Scholar
  • 28.

    Pell, L. G., Kanelis, V., Donaldson, L. W., Howell, P. L. & Davidson, A. R. The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc. Natl Acad. Sci. USA 106, 4160–4165 (2009).

    • Google Scholar
  • 29.

    Wang, C., Tu, J., Liu, J. & Molineux, I. J. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 4, 1049–1056 (2019).

    • Google Scholar
  • 30.

    Legrand, P. et al. The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. mBio 7, e01781–e01815 (2016).

    • Google Scholar
  • 31.

    Tremblay, D. M. et al. Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J. Bacteriol. 188, 2400–2410 (2006).

    • Google Scholar
  • 32.

    Spinelli, S. et al. Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J. Biol. Chem. 281, 14256–14262 (2006).

    • Google Scholar
  • 33.

    Spinelli, S. et al. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat. Struct. Mol. Biol. 13, 85–89 (2006).

    • Google Scholar
  • 34.

    Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

    • Google Scholar
  • 35.

    Abrescia, N. G. et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol. Cell 31, 749–761 (2008).

    • Google Scholar
  • 36.

    Abrescia, N. G. et al. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 68–74 (2004).

    • Google Scholar
  • 37.

    Fabry, C. M. S. et al. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J. 24, 1645–1654 (2005).

    • Google Scholar
  • 38.

    Peralta, B. et al. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLoS Biol. 11, e1001667 (2013).

    • Google Scholar
  • 39.

    Vidaver, A. K., Koski, R. K. & Van Etten, J. L. Bacteriophage ϕ6: a lipid-containing virus of Pseudomonas phaseolicola. J. Virol. 11, 799–805 (1973).

    • Google Scholar
  • 40.

    Krupovic, M. & ICTV Report Consortium. ICTV virus taxonomy profile: Plasmaviridae. J. Gen. Virol. 99, 617–618 (2018).

    • Google Scholar
  • 41.

    Greenberg, N. & Rottem, S. Composition and molecular organization of lipids and proteins in the envelope of mycoplasmavirus MVL2. J. Virol. 32, 717–726 (1979).

    • Google Scholar
  • 42.

    McKenna, R. et al. Atomic structure of single-stranded DNA bacteriophage ϕX174 and its functional implications. Nature 355, 137–143 (1992).

    • Google Scholar
  • 43.

    Sun, L. et al. Icosahedral bacteriophage ΦX174 forms a tail for DNA transport during infection. Nature 505, 432–435 (2014).

    • Google Scholar
  • 44.

    Chipman, P. R., Agbandje-McKenna, M., Renaudin, J., Baker, T. S. & McKenna, R. Structural analysis of the Spiroplasma virus, SpV4: implications for evolutionary variation to obtain host diversity among the Microviridae. Structure 6, 135–145 (1998).

    • Google Scholar
  • 45.

    Doore, S. M. & Fane, B. A. The kinetic and thermodynamic aftermath of horizontal gene transfer governs evolutionary recovery. Mol. Biol. Evol. 32, 2571–2584 (2015).

    • Google Scholar
  • 46.

    Valegard, K., Liljas, L., Fridborg, K. & Unge, T. The three-dimensional structure of the bacterial virus MS2. Nature 345, 36–41 (1990).

    • Google Scholar
  • 47.

    Peabody, D. S. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12, 595–600 (1993).

    • Google Scholar
  • 48.

    Koning, R. I. et al. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun. 7, 12524 (2016). This article reports the ability of RNA phages to adopt defined conformations that can be involved in genome packaging and virion assembly.

    • Google Scholar
  • 49.

    Casjens, S. R. The DNA-packaging nanomotor of tailed bacteriophages. Nat. Rev. Microbiol. 9, 647–657 (2011).

    • Google Scholar
  • 50.

    Marvin, D. A. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8, 150–158 (1998).

    • Google Scholar
  • 51.

    Xu, J., Dayan, N., Goldbourt, A. & Xiang, Y. Cryo-electron microscopy structure of the filamentous bacteriophage IKe. Proc. Natl Acad. Sci. USA 116, 5493 (2019).

    • Google Scholar
  • 52.

    Russel, M. & Model, P. A mutation downstream from the signal peptidase cleavage site affects cleavage but not membrane insertion of phage coat protein. Proc. Natl Acad. Sci. USA 78, 1717–1721 (1981).

    • Google Scholar
  • 53.

    Suhanovsky, M. M. & Teschke, C. M. Nature’s favorite building block: deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 479–480, 487–497 (2015).

    • Google Scholar
  • 54.

    Pietilä, M. K. et al. Structure of the archaeal head–tailed virus HSTV-1 completes the HK97 fold story. Proc. Natl Acad. Sci. USA 110, 10604 (2013). This article focuses on the MCP HK97 fold and its conservation at the structural level between tailed phages and archaeal and eukaryotic viruses.

    • Google Scholar
  • 55.

    Jordan, T. C. et al. A broadly implementable research course for first-year undergraduate students. mBio 5, 1–8 (2014).

    • Google Scholar
  • 56.

    Creasy, A., Rosario, K., Leigh, B. A., Dishaw, L. J. & Breitbart, M. Unprecedented diversity of ssDNA phages from the family Microviridae detected within the gut of a protochordate model organism (Ciona robusta). Viruses 10, 404 (2018).

    • Google Scholar
  • 57.

    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus—host interactions resolved from publicly available microbial genomes. eLife 4, 1–20 (2015).

    • Google Scholar
  • 58.

    Yuan, Y. & Gao, M. Jumbo bacteriophages: an overview. Front. Microbiol. 8, 1–9 (2017).

    • Google Scholar
  • 59.

    Bergh, Ø., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    • Google Scholar
  • 60.

    Hatfull, G. F. Bacteriophage genomics. Curr. Opin. Microbiol. 11, 447–453 (2008).

    • Google Scholar
  • 61.

    Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the Prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 75, 610–635 (2011). This Review presents phage genomic diversity with a main focus on tailed dsDNA phages and an overview of the other phage families.

    • Google Scholar
  • 62.

    Grose, J. H. & Casjens, S. R. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468, 421–443 (2014).

    • Google Scholar
  • 63.

    Mavrich, T. N. & Hatfull, G. F. Bacteriophage evolution differs by host, lifestyle and genome. Nat. Microbiol. 2, 1–9 (2017). This study presents a large-scale bioinformatic analysis of evolutionary relationships and the rate of HGT in a dataset of more than 2,300 phages.

    • Google Scholar
  • 64.

    Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    • Google Scholar
  • 65.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    • Google Scholar
  • 66.

    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    • Google Scholar
  • 67.

    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017).

    • Google Scholar
  • 68.

    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    • Google Scholar
  • 69.

    Hurwitz, B. L. & Sullivan, M. B. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8, 1–12 (2013).

    • Google Scholar
  • 70.

    Duarte, C. M. Seafaring in the 21st century: the Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).

    • Google Scholar
  • 71.

    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    • Google Scholar
  • 72.

    Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. 8, 1–12 (2017).

    • Google Scholar
  • 73.

    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    • Google Scholar
  • 74.

    Reyes, A. et al. Viruses in the fecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    • Google Scholar
  • 75.

    Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    • Google Scholar
  • 76.

    Manrique, P. et al. Healthy human gut phageome. Proc. Natl Acad. Sci. USA 113, 201601060 (2016).This study identifies 44 phage groups in the gut microbiota, nine of which are shared across more than one-half of individuals and are proposed to be part of a healthy gut phageome.

    • Google Scholar
  • 77.

    Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

    • Google Scholar
  • 78.

    Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    • Google Scholar
  • 79.

    Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus–virus coexistence. Nature 474, 604–608 (2011).

    • Google Scholar
  • 80.

    Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017). This study uses single-virus genomics to identify the most widespread phages in the ocean, which were previously overlooked in metagenomics projects because of their high microdiversity.

    • Google Scholar
  • 81.

    Martinez-Hernandez, F. et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 13, 232–236 (2019).

    • Google Scholar
  • 82.

    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014). This viral ecology study proposes an approach to quantitatively link phage populations and their genomes to their hosts.

    • Google Scholar
  • 83.

    Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

    • Google Scholar
  • 84.

    Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    • Google Scholar
  • 85.

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

    • Google Scholar
  • 86.

    Marston, M. F. & Martiny, J. B. H. Genomic diversification of marine cyanophages into stable ecotypes. Environ. Microbiol. 18, 4240–4253 (2016).

    • Google Scholar
  • 87.

    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

    • Google Scholar
  • 88.

    Holmfeldt, K. et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc. Natl Acad. Sci. USA 110, 12798 (2013).

    • Google Scholar
  • 89.

    López-Pérez, M., Haro-Moreno, J. M., Gonzalez-Serrano, R., Parras-Moltó, M. & Rodriguez-Valera, F. Genome diversity of marine phages recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13, e1007018 (2017).

    • Google Scholar
  • 90.

    Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016).

    • Google Scholar
  • 91.

    Payet, J. P. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013).

    • Google Scholar
  • 92.

    Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    • Google Scholar
  • 93.

    Thingstad, T. F., Vage, S., Storesund, J. E., Sandaa, R.-A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014).

    • Google Scholar
  • 94.

    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).

    • Google Scholar
  • 95.

    Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).

    • Google Scholar
  • 96.

    Williamson, K. E., Radosevich, M. & Wommack, K. E. Abundance and diversity of viruses in six Delaware soils. Appl. Environ. Microbiol. 71, 3119–3125 (2005).

    • Google Scholar
  • 97.

    Chen, L. et al. Effect of different long-term fertilization regimes on the viral community in an agricultural soil of southern China. Eur. J. Soil. Biol. 62, 121–126 (2014).

    • Google Scholar
  • 98.

    Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73, 7059 (2007).

    • Google Scholar
  • 99.

    Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).

    • Google Scholar
  • 100.

    Hoyles, L. et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

    • Google Scholar
  • 101.

    Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).

    • Google Scholar
  • 102.

    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    • Google Scholar
  • 103.

    Minot, S. & Bryson, A. Rapid evolution of the human gut virome. Proc. Natl Acad. Sci. USA 110, 12450–12455 (2013).

    • Google Scholar
  • 104.

    Shkoporov, A. N. et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 6, 68 (2018).

    • Google Scholar
  • 105.

    Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    • Google Scholar
  • 106.

    Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    • Google Scholar
  • 107.

    Highton, P. J., Chang, Y. & Myers, R. J. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4, 1329–1340 (1990).

    • Google Scholar
  • 108.

    Hatfull, G. F. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89, 8107–8110 (2015).

    • Google Scholar
  • 109.

    Juhala, R. J. et al. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51 (2000).

    • Google Scholar
  • 110.

    De Paepe, M. et al. Temperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinases. PLoS Genet. 10, e1004181 (2014).

    • Google Scholar
  • 111.

    Nilsson, A. S. & Haggård-Ljungquist, E. Detection of homologous recombination among bacteriophage P2 relatives. Mol. Phylogenet. Evol. 21, 259–269 (2001).

    • Google Scholar
  • 112.

    Bobay, L., Touchon, M. & Rocha, E. P. C. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability. PLoS Genet. 9, 1–9 (2013).

    • Google Scholar
  • 113.

    Hershey, A. D. (ed.) The Bacteriophage Lambda (Cold Spring Harbor Laboratory Press 1971).

  • 114.

    Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

    • Google Scholar
  • 115.

    Diemer, G. S. & Stedman, K. M. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol. Direct 7, 1–14 (2012).

    • Google Scholar
  • 116.

    Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    • Google Scholar
  • 117.

    Labrie, S. J. & Moineau, S. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J. Bacteriol. 189, 1482–1487 (2007).

    • Google Scholar
  • 118.

    Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D. & Chopin, M.-C. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29, 644–651 (2001).

    • Google Scholar
  • 119.

    Lima-Mendez, G., Helden, J. Van, Toussaint, A. & Leplae, R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 (2008). This study shows that phage evolutionary relationships are better represented with a reticulate network because mosaicism leads to phages belonging to multiple groups.

    • Google Scholar
  • 120.

    Hendrix, R. W., Hatfull, G. F. & Smith, M. C. M. Bacteriophages with tails: chasing their origins and evolution. Res. Microbiol. 154, 253–257 (2003).

    • Google Scholar
  • 121.

    Marston, M. F. & Amrich, C. G. Recombination and microdiversity in coastal marine cyanophages. Environ. Microbiol. 11, 2893–2903 (2009).

    • Google Scholar
  • 122.

    Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).

    • Google Scholar
  • 123.

    Szymczak, P., Janzen, T., Neves, R. & Kot, W. Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species. Appl. Environ. Microbiol. 83, 1–16 (2017).

    • Google Scholar
  • 124.

    Lavelle, K. et al. A decade of Streptococcus thermophilus phage evolution in an Irish dairy plant. Appl. Environ. Microbiol. 84, 1–17 (2018).

    • Google Scholar
  • 125.

    Kupczok, A. et al. Rates of mutation and recombination in Siphoviridae phage genome evolution over three decades. Mol. Biol. Evol. 35, 1147–1159 (2018).

    • Google Scholar
  • 126.

    Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015). This study uses the largest collection of phages infecting the same host (M. smegmatis) to evaluate evolutionary relationships, genomic clusters and discreteness of these clusters.

    • Google Scholar
  • 127.

    Hendrix, R. W. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61, 471–480 (2002).

    • Google Scholar
  • 128.

    Rohwer, F. & Edwards, R. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002).

    • Google Scholar
  • 129.

    Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 7, 1–21 (2016).

    • Google Scholar
  • 130.

    Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect archaea and bacteria. PeerJ 5, e3243 (2017).

    • Google Scholar
  • 131.

    Jang, H. Bin et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    • Google Scholar
  • 132.

    Cesar Ignacio-Espinoza, J., Solonenko, S. A. & Sullivan, M. B. The global virome: not as big as we thought? Curr. Opin. Virol. 3, 566–571 (2013).

    • Google Scholar
  • 133.

    Simmonds, P. et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    • Google Scholar
  • 134.

    Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA 102, 18944–18949 (2005).

    • Google Scholar
  • 135.

    Benson, S. D., Bamford, J. K. H., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    • Google Scholar
  • 136.

    Hendrix, R. W. Evolution: the long evolutionary reach of viruses. Curr. Biol. 9, 914–917 (1999).

    • Google Scholar
  • 137.

    Krupovič, M. & Bamford, D. H. Virus evolution: how far does the double β-barrel viral lineage extend? Nat. Rev. Microbiol. 6, 941–948 (2008).

    • Google Scholar
  • 138.

    Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).

    • Google Scholar
  • 139.

    Rixon, F. J. & Schmid, M. F. Structural similarities in DNA packaging and delivery apparatuses in herpesvirus and dsDNA bacteriophages. Curr. Opin. Virol. 5, 105–110 (2014).

    • Google Scholar
  • 140.

    El Omari, K. et al. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 21, 1384–1395 (2013).

    • Google Scholar
  • 141.

    Huiskonen, J. T. et al. Structure of the bacteriophage ϕ6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 14, 1039–1048 (2006).

    • Google Scholar
  • 142.

    Bamford, D. H. Do viruses form lineages across different domains of life? Res. Microbiol. 154, 231–236 (2003).

    • Google Scholar
  • 143.

    Sinclair, R., Ravantti, J. & Bamford, D. H. Nucleic and amino acid sequences support structure-based viral classification. J. Virol. 91, 1–13 (2017).

    • Google Scholar
  • 144.

    Ackermann, H.-W. Bacteriophage electron microscopy. Adv. Virus Res. 82, 1–32 (2012).

    • Google Scholar
  • 145.

    Hurwitz, B. L., Brum, J. R. & Sullivan, M. B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome. ISME J. 9, 472–484 (2015).

    • Google Scholar
  • 146.

    Villar, E. et al. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 348, 1261447 (2015).

    • Google Scholar
  • 147.

    Luo, E., Aylward, F. O., Mende, D. R. & DeLong, E. F. Bacteriophage distributions and temporal variability in the ocean’s interior. mBio 8, e01903–e01917 (2017).

    • Google Scholar
  • 148.

    Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    • Google Scholar

  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries