in

Ecological variables for developing a global deep-ocean monitoring and conservation strategy

  • 1.

    Ramirez-Llodra, E. et al. Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6, e22588 (2011).

  • 2.

    Mengerink, K. J. et al. A call for deep-ocean stewardship. Science 344, 696–698 (2014).

  • 3.

    Cordes, E. E. et al. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front. Env. Sci. 4, 58 (2016).

    • Article
    • Google Scholar
  • 4.

    Danovaro, R., Dell’Anno, A. & Pusceddu, A. Biodiversity response to climate change in a warm deep sea. Ecol. Lett. 7, 821–828 (2004).

    • Article
    • Google Scholar
  • 5.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

  • 6.

    Armstrong, C. W., Foley, N. S., Tinch, R. & van den Hove, S. Services from the deep: steps towards valuation of deep-sea goods and services. Ecosyst. Serv. 2, 2–13 (2012).

    • Article
    • Google Scholar
  • 7.

    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).

    • Article
    • Google Scholar
  • 8.

    Danovaro, R. et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 18, 1–8 (2008).

  • 9.

    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8861–8866 (2014).

  • 10.

    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

  • 11.

    Levin, L. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).

  • 12.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. 5, 4 (2017).

    • Article
    • Google Scholar
  • 13.

    Hughes, T. P., Bellwood, D. R., Folke, C. S., McCook, L. J. & Pandolfi, J. M. No-take areas, herbivory and coral reef resilience. Trends Ecol. Evol. 22, 1–3 (2007).

  • 14.

    Kachelriess, D., Wegmann, M., Gollock, M. & Pettorelli, N. The application of remote sensing for marine protected area management. Ecol. Indic. 36, 169–177 (2014).

    • Article
    • Google Scholar
  • 15.

    Levin, L. A. & Dayton, P. K. Ecological theory and continental margins: where shallow meets deep. Trends Ecol. Evol. 24, 606–617 (2009).

  • 16.

    Canals, M. et al. Flushing submarine canyons. Nature 444, 354–357 (2006).

  • 17.

    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).

    • Article
    • Google Scholar
  • 18.

    Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).

  • 19.

    Scholes, R. J. et al. Building a global observing system for biodiversity. Curr. Opin. Environ. Sustain. 4, 139 (2012).

    • Article
    • Google Scholar
  • 20.

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

  • 21.

    Lindstrom, E. J., Gunn, A., Fischer, A. & McCurdy, L. K. A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing (UNESCO, 2012).

  • 22.

    Levin, L. A. et al. Global observing needs in the deep ocean. Front. Mar. Sci. 6, 241 (2019).

    • Article
    • Google Scholar
  • 23.

    Woodall, L. C. et al. A multidisciplinary approach for generating globally consistent data on mesophotic, deep-pelagic, and bathyal biological communities. Oceanography 31, 76–89 (2018).

    • Article
    • Google Scholar
  • 24.

    Danovaro, R. et al. An ecosystem-based deep-ocean strategy. Science 355, 452–454 (2017).

  • 25.

    Qualtrics, I. (Qualtrics, 2013).

  • 26.

    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).

  • 27.

    Karl, D. M. & Lukas, R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep-Sea Res. II 43, 129–156 (1996).

  • 28.

    Hurtt, G. C. & Armstrong, R. A. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Res. II 43, 653–683 (1996).

  • 29.

    Aguzzi, J. & Company, J. B. Chronobiology of deep-water decapod crustaceans on continental margins. Adv. Mar. Biol. 58, 155–225 (2010).

  • 30.

    Herná, S. et al. Carbon sequestration and zooplankton lunar cycles: could we be missing a major component of the biological pump? Limnol. Oceanogr. 55, 2503–2512 (2010).

    • Article
    • Google Scholar
  • 31.

    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

  • 32.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    • Article
    • Google Scholar
  • 33.

    Yool, A. et al. Big in the benthos: future change of seafloor community biomass in a global, body size‐resolved model. Glob. Change Biol. 23, 3554–3566 (2017).

    • Article
    • Google Scholar
  • 34.

    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).

  • 35.

    Pusceddu, A., Dell’Anno, A., Fabiano, M. & Danovaro, R. Quantity and bioavailability of sediment organic matter as signatures of benthic trophic status. Mar. Ecol. Prog. Ser. 375, 41–52 (2009).

  • 36.

    Van Dover, C. L. Hydrothermal vent ecosystems and conservation. Oceanography 25, 313–316 (2012).

    • Article
    • Google Scholar
  • 37.

    Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Mar. Sci. 3, 72 (2016).

    • Article
    • Google Scholar
  • 38.

    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).

    • Article
    • Google Scholar
  • 39.

    Danovaro, R., Corinaldesi, C., Rastelli, E. & Dell’Anno, A. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquat. Microb. Ecol. 75, 81–90 (2015).

    • Article
    • Google Scholar
  • 40.

    Gambi, C., Pusceddu, A., Benedetti‐Cecchi, L. & Danovaro, R. Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Glob. Ecol. Biogeogr. 23, 24–39 (2014).

    • Article
    • Google Scholar
  • 41.

    Robison, B. H. Conservation of deep pelagic biodiversity. Conserv. Biol. 23, 847–858 (2009).

    • Article
    • Google Scholar
  • 42.

    Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a Framework for Community Action in the field of Marine Environmental Policy (Marine Strategy Framework Directive, 2008).

  • 43.

    Van Dover, C. L. et al. Ecological restoration in the deep sea: Desiderata. Mar. Policy 44, 98–106 (2014).

    • Article
    • Google Scholar
  • 44.

    Gollner, S. et al. Resilience of benthic deep-sea fauna to mining activities. Mar. Environ. Res. 129, 76–101 (2017).

  • 45.

    Jamieson, A. J., Malkocs, T., Piertney, S. B., Fujii, T. & Zhang, Z. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat. Ecol. Evol. 1, 0051 (2017).

    • Article
    • Google Scholar
  • 46.

    Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 24–34 (2006).

    • Article
    • Google Scholar
  • 47.

    André, M. et al. Listening to the deep: live monitoring of ocean noise and cetacean acoustic signals. Mar. Pollut. Bull. 63, 18–26 (2011).

  • 48.

    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

  • 49.

    Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558 (2017).

  • 50.

    Foster, L. C., Schmidt, D. N., Thomas, E., Arndt, S. & Ridgwell, A. Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. Proc. Natl Acad. Sci. USA 110, 9273–9276 (2013).

    • Article
    • Google Scholar
  • 51.

    Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

  • 52.

    Roberts, J. M. & Cairns, S. D. Cold-water corals in a changing ocean. Curr. Opin. Environ. Sustain. 7, 118–126 (2014).

    • Article
    • Google Scholar
  • 53.

    Cartes, J. E., Maynou, F., Fanelli, E., López-Pérez, C. & Papiol, V. Changes in deep-sea fish and crustacean communities at 1000–2200 m in the Western Mediterranean after 25 years: relation to hydro-climatic conditions. J. Mar. Syst. 143, 138–153 (2015).

    • Article
    • Google Scholar
  • 54.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

  • 55.

    Smith, K. E. & Thatje, S. The secret to successful deep-sea invasion: does low temperature hold the key? PLoS ONE 7, e51219 (2012).

  • 56.

    Yasuhara, M., Cronin, T. M., Okahashi, H. & Linsley, B. K. Abrupt climate change and collapse of deep-sea ecosystems. Proc. Natl Acad. Sci. USA 105, 1556–1560 (2008).

  • 57.

    Adams, D. K. et al. Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 332, 580–583 (2011).

  • 58.

    Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).

  • 59.

    Van der Grient, J. M. & Rogers, A. D. Body size versus depth: regional and taxonomical variation in deep-sea meio-and macrofaunal organisms. Adv. Mar. Biol. 71, 71–108 (2015).

    • Article
    • Google Scholar
  • 60.

    Galil, B. S., Danovaro, R., Rothman, S. B. S., Gevili, R. & Goren, M. Invasive biota in the deep-sea Mediterranean: an emerging issue in marine conservation and management. Biol. Invas. 20, 281–288 (2019).

    • Article
    • Google Scholar
  • 61.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

  • 62.

    Wedding, L. M. et al. From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. Lond. B 280, 20131684 (2013).

  • 63.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

  • 64.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

  • 65.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

  • 66.

    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298 (2016).

    • Article
    • Google Scholar
  • 67.

    Pikitch, E. K. et al. Ecosystem-based fishery management. Science 305, 346–347 (2004).

  • 68.

    Salinas-de-León, P. et al. Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci. Rep. 8, 1788 (2018).

  • 69.

    Roberts, C. M. Deep impact: the rising toll of fishing in the deep sea. Trends Ecol. Evol. 17, 242–245 (2002).

    • Article
    • Google Scholar
  • 70.

    Clark, M. R. & Dunn, M. R. Spatial management of deep-sea seamount fisheries: balancing sustainable exploitation and habitat conservation. Environ. Conserv. 39, 204–214 (2012).

    • Article
    • Google Scholar
  • 71.

    Pellerin, B. A. et al. Emerging tools for continuous nutrient monitoring networks: sensors advancing science and water resources protection. J. Am. Water Resour. Assoc. 52, 993–1008 (2016).

    • Article
    • Google Scholar
  • 72.

    Rochman, C. M., Cook, A. M. & Koelmans, A. A. Plastic debris and policy: using current scientific understanding to invoke positive change. Environ. Toxicol. Chem. 35, 1617–1626 (2016).

  • 73.

    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).

    • Article
    • Google Scholar
  • 74.

    Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteor. Soc. 95, 1431–1443 (2014).

    • Article
    • Google Scholar
  • 75.

    Aguzzi, J. et al. Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore in Sagami Bay, Japan. Sci. Rep. 8, 11163 (2018).

  • 76.

    Aguzzi, J. et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ. Sci. Tech. 53, 6616–6631 (2019).

  • 77.

    Brandt, A. et al. Cutting the umbilical: new technological perspectives in benthic deep-sea research. J. Mar. Sci. Eng. 4, 36 (2016).

    • Article
    • Google Scholar
  • 78.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979–1005 (2010).

  • 79.

    Billett, D. S. M. et al. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). Prog. Oceanogr. 50, 325–348 (2001).

    • Article
    • Google Scholar
  • 80.

    Ruhl, H. A. & Smith, K. L. Jr Shifts in deep-sea community structure linked to climate and food supply. Science 305, 513–515 (2004).

  • 81.

    Smith, K. L., Ruhl, H. A., Kahru, M., Huffard, C. L. & Sherman, A. D. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean. Proc. Natl Acad. Sci. USA 110, 19838–19841 (2013).

  • 82.

    Ramirez-Llodra, E. Fecundity and life-history strategies in marine invertebrates. Adv. Mar. Biol. 43, 88–170 (2002).

    • Google Scholar
  • 83.

    McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl Acad. Sci. USA 109, 15366–15371 (2012).

  • 84.

    Yasuhara, M. & Danovaro, R. Temperature impacts on deep‐sea biodiversity. Biol. Rev. 1, 275–287 (2016).

    • Article
    • Google Scholar
  • 85.

    McClain, C. R. & Barry, J. P. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964–976 (2010).

  • 86.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

  • 87.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

  • 88.

    Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE 12, e0171750 (2017).

  • 89.

    Millennium Ecosystem Assessment Ecosystems and Human Well-being: Desertification Synthesis (World Resources Institute, 2005).

  • 90.

    Hein, L. & De Ridder, N. Desertification in the Sahel: a reinterpretation. Glob. Change Biol. 12, 751–758 (2006).

    • Article
    • Google Scholar
  • 91.

    Norse, E. A. et al. Sustainability of deep-sea fisheries. Mar. Policy 36, 307–320 (2012).

    • Article
    • Google Scholar
  • 92.

    Pham, C. K. et al. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems. Sci. Rep. 4, 4837 (2014).

  • 93.

    Puig, P. et al. Ploughing the deep seafloor. Nature 489, 286–289 (2012).

  • 94.

    Chiba, S. et al. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Mar. Policy 96, 204–212 (2018).

    • Article
    • Google Scholar
  • 95.

    Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. M. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).

  • 96.

    Hestetun, J. T., Pomponi, S. A. & Rapp, H. T. The cladorhizid fauna (Porifera, Poecilosclerida) of the Caribbean and adjacent waters. Zootaxa 4175, 521–538 (2016).

  • 97.

    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables”—eEOVs) for observing dynamics and change in Southern Ocean ecosystems. J. Mar. Syst. 161, 26–41 (2016).

    • Article
    • Google Scholar
  • 98.

    McIntyre, A. (ed.) Life in the World’s Oceans: Diversity, Distribution, and Abundance (John Wiley & Sons, 2010).

  • 99.

    Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5, e11832 (2010).

  • 100.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

  • 101.

    Gambi, C. et al. Functional response to food limitation can reduce the impact of global change in the deep‐sea benthos. Glob. Ecol. Biogeogr. 26, 1008–1021 (2017).

    • Article
    • Google Scholar
  • 102.

    Holt, E. A. & Miller, S. W. Bioindicators: using organisms to measure environmental impacts. Nat. Educ. 3, 8 (2010).

    • Google Scholar
  • 103.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

  • 104.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean‐warming hotspot. Ecol. Lett. 18, 944–953 (2015).

  • 105.

    Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Ann. Rev. Mar. Sci. 4, 79–112 (2012).

  • 106.

    Fanelli, E., Bianchelli, S. & Danovaro, R. Deep-sea mobile megafauna of Mediterranean submarine canyons and open slopes: analysis of spatial and bathymetric gradients. Progr. Oceanogr. 168, 23–34 (2018).

    • Article
    • Google Scholar
  • 107.

    Dunn, D. C. et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Sci. Adv. 4, eaar4313 (2018).

  • 108.

    FAO Vulnerable Marine Ecosystems Database (FAO, March 2019); https://go.nature.com/2uBsfOC

  • 109.

    Miller, K. A., Thompson, K. F., Johnston, P. & Santillo, D. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front. Mar. Sci. 4, 418 (2018).

    • Article
    • Google Scholar
  • 110.

    Rogers, A. D., Clark, M. R., Hall-Spencer, J. M. & Gjerde, K. M. The Science Behind the Guidelines: A Scientific Guide to the FAO Draft International Guidelines (December 2007) for the Management of Deep-Sea Fisheries in the High Seas and Examples of how the Guidelines may be Practically Implemented (IUCN, 2008).


  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries