in

The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers

  • 1.

    Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 2.

    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

  • 3.

    Burns, K. J., Hackett, S. J. & Klein, N. K. Phylogenetic relationships and morphological diversity in Darwin’s finches and their relatives. Evolution 56, 1240–1252 (2002).

  • 4.

    Arbogast, B. S. et al. The origin and diversification of Galapagos mockingbirds. Evolution 60, 370–382 (2006).

  • 5.

    Lovette, I. J., Bermingham, E. & Ricklefs, R. E. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. R. Soc. Lond. B 269, 37–42 (2002).

    • Article
    • Google Scholar
  • 6.

    Pratt, H. D. & Conant, S. The Hawaiian Honeycreepers: Drepanidinae (Oxford Univ. Press, 2005).

  • 7.

    Tokita, M., Yano, W., James, H. F. & Abzhanov, A. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin’s finches and Hawaiian honeycreepers. Phil. Trans. R. Soc. B 372, 20150481 (2017).

  • 8.

    Darwin, C. The Zoology of the Voyage of HMS Beagle: Under the Command of Captain Fitzroy, RN, During the Years 1832 to 1836: Published with the Approval of the Lords Commissioners of Her Majesty’s Treasury (Smith, Elder and Company, 1839).

  • 9.

    Mayr, E. The zoogeographic position of the Hawaiian Islands. Condor 45, 45–48 (1943).

    • Article
    • Google Scholar
  • 10.

    Fleischer, R. C., James, H. F. & Olson, S. L. Convergent evolution of Hawaiian and Australo-Pacific honeyeaters from distant songbird ancestors. Curr. Biol. 18, 1927–1931 (2008).

  • 11.

    Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci.USA 113, 5352–5357 (2016).

  • 12.

    Abzhanov, A. The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’. Development 144, 4284–4297 (2017).

  • 13.

    Goswami, A., Smaers, J., Soligo, C. & Polly, P. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).

  • 14.

    Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil. Trans. R. Soc. B 369, 20130249 (2014).

  • 15.

    Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).

  • 16.

    Olson, E. C. & Miller, R. L. Morphological Integration (Univ. Chicago Press, 1999).

  • 17.

    Villmoare, B. Morphological integration, evolutionary constraints, and extinction: a computer simulation-based study. Evol. Biol. 40, 76–83 (2013).

    • Article
    • Google Scholar
  • 18.

    Fisher, R. A. The Genetic Theory of Natural Selection (Dover, 1958).

  • 19.

    Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

  • 20.

    Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    • Article
    • Google Scholar
  • 21.

    Raff, R. A. The Shape of Life: Genes, Development, and the Evolution of Animal Form (Univ. Chicago Press, 2012).

  • 22.

    Wagner, G. Coevolution of functionally constrained characters: prerequisites for adaptive versatility. Biosystems 17, 51–55 (1984).

  • 23.

    Marroig, G. & Cheverud, J. M. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59, 1128–1142 (2005).

    • Article
    • Google Scholar
  • 24.

    Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003).

    • Article
    • Google Scholar
  • 25.

    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).

  • 26.

    Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).

  • 27.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

  • 28.

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

  • 29.

    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

  • 30.

    Gibbs, H. L. & Grant, P. R. Oscillating selection on Darwin’s finches. Nature 327, 511–513 (1987).

    • Article
    • Google Scholar
  • 31.

    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science 313, 224–226 (2006).

  • 32.

    Smith, T. B., Freed, L. A., Lepson, J. K. & Carothers, J. H. Evolutionary consequences of extinctions in populations of a Hawaiian honeycreeper. Conserv. Biol. 9, 107–113 (1995).

    • Article
    • Google Scholar
  • 33.

    Darwin, C. & Wallace, A. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool. J. Linn. Soc. 3, 45–62 (1858).

    • Article
    • Google Scholar
  • 34.

    Klingenberg, C. P. Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 24, 43–58 (2013).

    • Google Scholar
  • 35.

    Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).

  • 36.

    Randau, M. & Goswami, A. Unravelling intravertebral integration, modularity and disparity in Felidae (Mammalia). Evol. Dev. 19, 85–95 (2017).

  • 37.

    Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).

  • 38.

    Wright, N. A., Steadman, D. W. & Witt, C. C. Predictable evolution toward flightlessness in volant island birds. Proc. Natl Acad. Sci. USA 113, 4765–4770 (2016).

  • 39.

    van der Geer, A. A., Lyras, G. A., Mitteroecker, P. & MacPhee, R. D. From Jumbo to Dumbo: cranial shape changes in elephants and hippos during phyletic dwarfing. Evol. Biol. 45, 303–317 (2018).

    • Article
    • Google Scholar
  • 40.

    Grant, B. R. & Grant, P. R. Evolution of Darwin’s finches caused by a rare climatic event. Proc. R. Soc. Lond. B 251, 111–117 (1993).

    • Article
    • Google Scholar
  • 41.

    Fritz, J. A. et al. Shared developmental programme strongly constrains beak shape diversity in songbirds. Nat. Commun. 5, 3700 (2014).

  • 42.

    Yuri, T. et al. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology 2, 419–444 (2013).

  • 43.

    Del Hoyo, J. et al. Handbook of the Birds of the World Alive (Lynx Editions, 2017).

  • 44.

    Rambaut, A. & Drummond, A. TreeAnnotator v1.7.0 (2013); http://beast.community/treeannotator.html

  • 45.

    Rohlf, F. tpsDig v.2.10 (Department of Ecology and Evolution, State Univ. New York at Stony Brook, 2006).

  • 46.

    Rohlf, F. tpsRelw, relative warps analysis (Department of Ecology and Evolution, State Univ. New York at Stony Brook, 2010).

  • 47.

    Perez, S. I., Bernal, V. & Gonzalez, P. N. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. J. Anat. 208, 769–784 (2006).

  • 48.

    Torcida, S., Perez, S. I. & Gonzalez, P. N. An integrated approach for landmark-based resistant shape analysis in 3D. Evol. Biol. 41, 351–366 (2014).

    • Article
    • Google Scholar
  • 49.

    Klingenberg, C. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).

    • Article
    • Google Scholar
  • 50.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); http://www.R-project.org/

  • 51.

    Pagel, M. & Meade, A. BayesTraits v.2.0 (Univ. Reading, 2013).

  • 52.

    Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

  • 53.

    Adams, D. C. & Collyer, M. L. Multivariate phylogenetic comparative methods: evaluations, comparisons, and recommendations. Syst. Biol. 67, 14–31 (2017).

    • Article
    • Google Scholar
  • 54.

    Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).

  • 55.

    Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).

  • 56.

    Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).

    • Google Scholar
  • 57.

    Bookstein, F. L. in Advances in Morphometrics. NATO ASI Series (Series A: Life Sciences) Vol. 284 (eds Marcus, L. F. et al.) 131–151 (Springer, 1996).

  • 58.

    Dryden, I. & Mardia, K. Statistical Analysis of Shape (Wiley, 1998).

  • 59.

    Siegel, A. F. & Benson, R. H. A robust comparison of biological shapes. Biometrics 38, 341–350 (1982).

  • 60.

    Cardini, A. Integration and modularity in Procrustes shape data: is there a risk of spurious results? Evol. Biol. 46, 90–105 (2018).

    • Article
    • Google Scholar
  • 61.

    Chapman, R. E. Conventional procrustes approaches. In Proc. of the Michigan Morphometrics Workshop Vol. 2 (eds Rohlf, F. J. & Bookstein, F.) 251–267 (Univ. Michigan Museum of Zoology, 1990).

  • 62.

    Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Academic, 2012).

  • 63.

    Klingenberg, C. P. & McIntyre, G. S. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52, 1363–1375 (1998).

    • Article
    • Google Scholar
  • 64.

    Bookstein, F. L. in Image Fusion and Shape Variability Techniques: Proceedings (eds Gill, C. A. & Mardia, K. V.) 59–70 (Leeds University Press, 1996).

  • 65.

    Adams, D. C., Rohlf, F. J. & Slice, D. E. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24, 7–14 (2013).

    • Google Scholar
  • 66.

    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).

    • Article
    • Google Scholar
  • 67.

    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: software for geometric morphometric analyses. R package version 3.0.7 (2018); https://cran.r-project.org/package=geomorph

  • 68.

    Zelditch, M. L., Ye, J., Mitchell, J. S. & Swiderski, D. L. Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evolution 71, 633–649 (2017).

    • Article
    • Google Scholar
  • 69.

    Uyeda, J. C., Caetano, D. S. & Pennell, M. W. Comparative analysis of principal components can be misleading. Syst. Biol. 64, 677–689 (2015).

  • 70.

    Chira, A. M. & Thomas, G. H. The impact of rate heterogeneity on inference of phylogenetic models of trait evolution. J. Evol. Biol. 29, 2502–2518 (2016).

  • 71.

    Monteiro, L. R. Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix 24, 25–32 (2013).

    • Google Scholar
  • 72.

    Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).

  • 73.

    Mitteroecker, P. & Bookstein, F. The conceptual and statistical relationship between modularity and morphological integration. Syst. Biol. 56, 818–836 (2007).

  • 74.

    Marroig, G., Shirai, L. T., Porto, A., de Oliveira, F. B. & De Conto, V. The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol. Biol. 36, 136–148 (2009).

    • Article
    • Google Scholar
  • 75.

    Renaud, S., Auffray, J. C. & Michaux, J. Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution 60, 1701–1717 (2006).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries