
Price, E. O. Behavioral-aspects of animal domestication. Quarterly Review of Biology 59, 1–32, https://doi.org/10.1086/413673 (1984).
Price, E. O. Behavioral development in animals undergoing domestication. Applied Animal Behaviour Science 65, 245–271, https://doi.org/10.1016/s0168-1591(99)00087-8 (1999).
Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707, https://doi.org/10.1038/nature01019 (2002).
Lindqvist, C. & Jensen, P. Domestication and stress effects on contrafreeloading and spatial learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behavioural Processes 81, 80–84, https://doi.org/10.1016/j.beproc.2009.02.005 (2009).
Lankin, V. S. Domestication-related behavior in sheep. Genetika 33, 1119–1125 (abstract in English) (1997).
Giuffra, E. et al. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics 154, 1785–1791 (2000).
Schaeffer, L. R. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123, 218–223, https://doi.org/10.1111/j.1439-0388.2006.00595.x (2006).
Trut, L., Oskina, I. & Kharlamova, A. Animal evolution during domestication: the domesticated fox as a model. BioEssays 31, 349–360, https://doi.org/10.1002/bies.200800070 (2009).
Vila, C. et al. Widespread origins of domestic horse lineages. Science 291, 474–477, https://doi.org/10.1126/science.291.5503.474 (2001).
Balon, E. K. About the oldest domesticates among fishes. J. Fish Biol. 65, 1–27, https://doi.org/10.1111/j.0022-1112.2004.00563.x (2004).
Wiener, P. & Wilkinson, S. Deciphering the genetic basis of animal domestication. Proceedings of the Royal Society B-Biological Sciences 278, 3161–3170, https://doi.org/10.1098/rspb.2011.1376 (2011).
Bidau, C. J. Domestication through the centuries: Darwin’s ideas and Dmitry Belyaev’s long-term experiment in silver foxes. Gayana 73, 55–72 (2009).
Flint, A. P. F. & Woolliams, J. A. Precision animal breeding. Philosophical Transactions of the Royal Society B-Biological Sciences 363, 573–590, https://doi.org/10.1098/rstb.2007.2171 (2008).
Julian, R. J. Rapid growth problems: Ascites and skeletal deformities in broilers. Poult. Sci. 77, 1773–1780, https://doi.org/10.1093/ps/77.12.1773 (1998).
Ciepoch, A., Rutkowska, K., Oprzadek, J. & Polawska, E. Genetic disorders in beef cattle: a review. Genes & Genomics 39, 461–471, https://doi.org/10.1007/s13258-017-0525-8 (2017).
Huntingford, F. A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 65, 122–142, https://doi.org/10.1111/j.0022-1112.2004.00562.x (2004).
McGinnity, P. et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. P. R. Soc. Lond. B. 270, 2443–2450, https://doi.org/10.1098/rspb.2003.2520 (2003).
McGinnity, P. et al. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J. Mar. Sci. 54, 998–1008, https://doi.org/10.1016/s1054-3139(97)80004-5 (1997).
Skaala, Ø. et al. Performance of farmed, hybrid and wild Atlantic salmon (Salmo salar) families in a natural river environment. Can. J. Fish. Aquat. Sci. 69, 1–13 (2012).
Fleming, I. A. et al. Lifetime success and interactions of farm salmon invading a native population. P. R. Soc. Lond. B. 267, 1517–1523 (2000).
Skaala, O. et al. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evolutionary Applications 12, 1001–1016, https://doi.org/10.1111/eva.12777 (2019).
Teletchea, F. & Fontaine, P. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15, 181–195, https://doi.org/10.1111/faf.12006 (2014).
Gjedrem, T., Gjøen, H. M. & Gjerde, B. Genetic-origin of Norwegian farmed Atlantic salmon. Aquaculture 98, 41–50, https://doi.org/10.1016/0044-8486(91)90369-i (1991).
Gjedrem, T. The first family-based breeding program in aquaculture. Reviews in Aquaculture 2, 2–15, https://doi.org/10.1111/j.1753-5131.2010.01011.x (2010).
Gjedrem, T. Genetic improvement of cold-water fish species. Aquaculture Research 31, 25–33, https://doi.org/10.1046/j.1365-2109.2000.00389.x (2000).
Solberg, M. F., Skaala, Ø., Nilsen, F. & Glover, K. A. Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress. PLoS One 8, e54469, https://doi.org/10.1371/journal.pone.0054469 (2013).
Glover, K. et al. Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish and Fisheries 18, https://doi.org/10.1111/faf.12214 (2017).
Solberg, M. F., Zhang, Z., Nilsen, F. & Glover, K. A. Growth reaction norms of domesticated, wild and hybrid Atlantic salmon families in response to differing social and physical environments. BMC Evolutionary Biology 13, https://doi.org/10.1186/1471-2148-13-234 (2013).
Harvey, C. A., Glover, K. A., Taylor, M. I. S. C. & Carvalho, G. R. A. common garden design reveals population-specific variability in potential impacts of hybridization between populations of farmed and wild Atlantic salmon. Salmo salar L. Evolutionary Applications. https://doi.org/10.1111/eva.12346 (2016).
Glover, K. A. et al. A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture 286, 203–210, https://doi.org/10.1016/j.aquaculture.2008.09.023 (2009).
Castellani, M. et al. Modeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapees. Evolutionary Applications, 1–16, https://doi.org/10.1111/eva.12615 (2018).
Glover, K. A. et al. Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genetics 14, 74, https://doi.org/10.1186/1471-2156-14-74 (2013).
Karlsson, S., Diserud, O. H., Fiske, P. & Hindar, K. Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J. Mar. Sci. 73, 2488–2498, https://doi.org/10.1093/icesjms/fsw121 (2016).
Skaala, Ø., Wennevik, V. & Glover, K. A. Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J. Mar. Sci. 63, 1224–1233, https://doi.org/10.1016/j.icesjms.2006.04.005 (2006).
Glover, K. A. et al. Three decades of farmed escapees in the wild: A spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One 7, e43129, https://doi.org/10.1371/journal.pone.0043129 (2012).
Clifford, S. L., McGinnity, P. & Ferguson, A. Genetic changes in Atlantic salmon (Salmo salar) populations of Northwest Irish rivers resulting from escapes of adult farm salmon. Can. J. Fish. Aquat. Sci. 55, 358–363, https://doi.org/10.1139/cjfas-55-2-358 (1998).
Crozier, W. W. Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a Northern Irish river. Aquaculture 113, 19–29, https://doi.org/10.1016/0044-8486(93)90337-x (1993).
Verspoor, E., Knox, D. & Marshall, S. Assessment of interbreeding and introgression of farm genes into a small Scottish Atlantic salmon Salmo salar stock: ad hoc samples – ad hoc results? J. Fish Biol. 89, 2680–2696, https://doi.org/10.1111/jfb.13173 (2016).
Bourret, V., O’Reilly, P. T., Carr, J. W., Berg, P. R. & Bernatchez, L. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106, 500–510, https://doi.org/10.1038/hdy.2010.165 (2011).
Keyser, F. et al. Predicting the impacts of escaped farmed Atlantic salmon on wild salmon populations. Can. J. Fish. Aquat. Sci. 1–7 (2018).
Skaala, Ø., Glover, K. A., Barlaup, B. T., Borgstrøm, R. & Microsatellite, D. N. A. used for parentage identification of partly digested Atlantic salmon (Salmo salar) juveniles through non-destructive diet sampling in salmonids. Marine Biology Research 10, 323–328, https://doi.org/10.1080/17451000.2013.810757 (2014).
Solberg, M. F., Zhang, Z. & Glover, K. A. Are farmed salmon more prone to risk than wild salmon? Susceptibility of juvenile farm, hybrid and wild Atlantic salmon Salmo salar L. to an artificial predator. Applied Animal Behaviour Science, 67–80, https://doi.org/10.1016/j.applanim.2014.11.012 (2015).
Sundt-Hansen, L., Huisman, J., Skoglund, H. & Hindar, K. Farmed Atlantic salmon Salmo salar L. parr may reduce early survival of wild fish. J. Fish Biol. 86, 1699–1712, https://doi.org/10.1111/jfb.12677 (2015).
Tymchuk, W. E., Sundström, L. F. & Devlin, R. H. Growth and survival trade-offs and outbreeding depression in rainbow trout (Oncorhynchus mykiss). Evolution 61, 1225–1237, https://doi.org/10.1111/j.1558-5646.2007.00102.x (2007).
Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 75, 1165–1171, https://doi.org/10.1111/j.1365-2656.2006.01137.x (2006).
Biro, P. A., Abrahams, M. V., Post, J. R. & Parkinson, E. A. Predators select against high growth rates and risk-taking behaviour in domestic trout populations. P. R. Soc. Lond. B. 271, 2233–2237, https://doi.org/10.1098/rspb.2004.2861 (2004).
Fleming, I. A. & Einum, S. Experimental tests of genetic divergence of farmed from wild Atlantic salmon due to domestication. ICES J. Mar. Sci. 54, 1051–1063, https://doi.org/10.1006/jmsc.1997.0289 (1997).
Einum, S. & Fleming, I. A. Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J. Fish Biol. 50, 634–651, https://doi.org/10.1006/jfbi.1996.0330 (1997).
Houde, A. L. S., Fraser, D. J. & Hutchings, J. A. Reduced anti-predator responses in multi-generational hybrids of farmed and wild Atlantic salmon (Salmo salar L.). Conservation Genetics 11, 785–794, https://doi.org/10.1007/s10592-009-9892-2 (2010).
Brännäs, E. First access to territorial space and exposure to strong predation pressure – a conflict in early emerging Atlantic salmon (Salmo salar L.) fry. Evol. Ecol. 9, 411–420, https://doi.org/10.1007/bf01237763 (1995).
Henderson, J. N. & Letcher, B. H. Predation on stocked Atlantic salmon (Salmo salar) fry. Can. J. Fish. Aquat. Sci. 60, 32–42, https://doi.org/10.1139/f03-001 (2003).
Bicskei, B., Bron, J. E., Glover, K. A. & Taggart, J. B. A comparison of gene transcription profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions. BMC Genomics 15, 884, https://doi.org/10.1186/1471-2164-15-884 (2014).
Thodesen, J. & Gjedrem, T. in Development of aquatic animal genetic improvement and dissemination programs: current status and action plans (eds R. W. Ponzoni, B. O. Acosta, & A. G. Ponniah) 22–26 (2006).
Debes, P. V. & Hutchings, J. A. Effects of domestication on parr maturity, growth, and vulnerability to predation in Atlantic salmon. Can. J. Fish. Aquat. Sci. 71, 1371–1384, https://doi.org/10.1139/cjfas-2013-0618 (2014).
Mignon-Grasteau, S. et al. Genetics of adaptation and domestication in livestock. Livestock Production Science 93, 3–14, https://doi.org/10.1016/j.livprodsci.2004.11.001 (2005).
Glover, K. A., Solberg, M. F., Besnier, F. & Skaala, O. Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild. Scientific Reports 8, https://doi.org/10.1038/s41598-018-32467-2 (2018).
Robertsen, G. et al. Can variation in standard metabolic rate explain contextdependent performance of farmed salmon offspring? Ecology and Evolution 9, 212–222 (2019).
Bolstad, G. H. et al. Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. 1, 0124, https://doi.org/10.1038/s41559-017-0124 (2017).
Besnier, F. et al. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild. Heredity 115, 47–55, https://doi.org/10.1038/hdy.2015.15 (2015).
Sylvester, E. V. A. et al. Estimating the relative fitness of escaped farmed salmon offspring in the wild and modelling the consequences of invasion for wild populations. Evolutionary Applications 12, 705–717, https://doi.org/10.1111/eva.12746 (2019).
Glover, K. A. et al. Domesticated escapees on the run: the second-generation monitoring programme reports the numbers and proportions of farmed Atlantic salmon in> 200 Norwegian rivers annually. ICES J. Mar. Sci. 76, 1151–1161, https://doi.org/10.1093/icesjms/fsy207 (2019).
Sylvester, E. V. A. et al. Migration effort and wild population size influence the prevalence of hybridization between escaped farmed and wild Atlantic salmon. Aquaculture Environment Interactions 10, 401–411, https://doi.org/10.3354/aei00277 (2018).
Diserud, O. H. et al. Escaped farmed Atlantic salmon in Norwegian rivers during 1989–2013. ICES J. Mar. Sci. 76, 1140–1150, https://doi.org/10.1093/icesjms/fsy202 (2019).
Wringe, B. F. et al. Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Communications Biology 1, https://doi.org/10.1038/s42003-018-0112-9 (2018).
Karlsson, S., Diserud, O. H., Moen, T. & Hindar, K. A standardized method for quantifying unidirectional genetic introgression. Ecology and Evolution 4, 3256–3263, https://doi.org/10.1002/ece3.1169 (2014).
Skaala, Ø., Taggart, J. B. & Gunnes, K. Genetic differences between five major domesticated strains of Atlantic salmon and wild salmon. J. Fish Biol. 67, 118–128, https://doi.org/10.1111/j.1095-8649.2005.00843.x (2005).
Crisp, D. T. A desk study of the relationship between temperature and hatching time for the eggs of 5 species of salmonid fishes. Freshwater Biology 11, 361–368, https://doi.org/10.1111/j.1365-2427.1981.tb01267.x (1981).
Crisp, D. T. Prediction, from temperature, of eyeing, hatching and swim-up times for salmonid embryos. Freshwater Biology 19, 41–48, https://doi.org/10.1111/j.1365-2427.1988.tb00325.x (1988).
Harvey, A. C. et al. Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet? Bmc Evolutionary Biology 16, https://doi.org/10.1186/s12862-016-0841-7 (2016).
Taggart, J. B. FAP: an exclusion-based parental assignment program with enhanced predictive functions. Molecular Ecology Notes 7, 412–415, https://doi.org/10.1111/j.1471-8286.2006.01616.x (2007).
Handy, S. M. et al. FDA Standard Operating Procedure (SOP) for Generating DNA Barcodes Suitable for Species Identification of an Unknown Fish Tissue Sample, https://www.fda.gov/food/foodscienceresearch/dnaseafoodidentification/ucm237391.htm (2011).
Handy, S. M. et al. A Single-Laboratory Validated Method for the Generation of DNA Barcodes for the Identification of Fish for Regulatory Compliance. J. AOAC Int. 94, 201–210 (2011).
Team, R. C. R: A Language and Environment for Statistical Computing. (2018).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48, https://doi.org/10.18637/jss.v067.i01. (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. {lmerTest} Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software 82, 1–26, https://doi.org/10.18637/jss.v082.i13 (2017).
Deepayan, S. Lattice: Multivariate Data Visualization with R. (Springer, 2008).
Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2018).
Source: Ecology - nature.com