in

Resilience of marine invertebrate communities during the early Cenozoic hyperthermals

  • 1.

    Henson, S. A., Beaulieu, C. & Lampitt, R. Observing climate change trends in ocean biogeochemistry: when and where. Glob. Change Biol. 22, 1561–1571 (2016).

  • 2.

    Hönisch, B. et al. The geological record of ocean acidification. Sci. 335, 1058–1063 (2012).

  • 3.

    Littler, K., Röhl, U., Westerhold, T. & Zachos, J. C. A high-resolution benthic stable-isotope record for the South Atlantic: Implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth Planet. Sci. Lett. 401, 18–30 (2014).

  • 4.

    Burke, K. D. et al. Pliocene and Eocene provide best analogs for nearfuture climates. P.N.A.S 115, 13288–13293 (2018).

  • 5.

    Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene Climatic Optimum. Geol. 41, 15–18 (2013).

  • 6.

    Schulte, P. et al. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind? Palaeogeography, Palaeoclimatology, Palaeoecology 371, 9–25 (2013).

  • 7.

    Norris, R. D., Turner, S. K., Hull, P. M. & Ridgwell, A. Marine ecosystem responses to Cenozoic global change. Sci. 341, 492–498 (2013).

  • 8.

    Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

  • 9.

    Scheibner, C. & Speijer, R. P. Decline of coral reefs during late Paleocene to early Eocene global warming. eEarth Discuss. 2, 133–150 (2007).

  • 10.

    Thomas, E. & Shackleton, N. J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. Geological Society, London, Special Publications 101, 401–441 (1996).

  • 11.

    Yamaguchi, T., Norris, R. D. & Bornemann, A. Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347, 130–144 (2012).

  • 12.

    Janssen, A. W., Sessa, J. A. & Thomas, E. Pteropoda (Mollusca, Gastropoda, Thecosomata) from the Paleocene-Eocene Thermal Maximum (United States Atlantic Coastal Plain). Palaeontologica Electronica 19.3.47A, 1–26, https://doi.org/10.26879/689 (2016).

    • Article
    • Google Scholar
  • 13.

    Speijer, R. P., Scheibner, C., Stassen, P. & Morsi, A.-M. M. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).

    • Google Scholar
  • 14.

    Self-Trail, J. M. et al. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA. Paleoceanography 32, 710–728 (2017).

  • 15.

    Bralower, T. J. et al. Evidence for shelf acidification during the onset of the Paleocene-Eocene Thermal Maximum. Paleoceanography Paleoclimatology 33, 1408–1426 (2018).

    • Article
    • Google Scholar
  • 16.

    Ivany, L. C. et al. Little lasting impact of the Paleocene-Eocene Thermal Maximum on shallow marine molluscan faunas. Sci. Adv. 4, eaat5528, https://doi.org/10.1126/sciadv.aat5528 (2018).

  • 17.

    Ward, L. W. Stratigraphy and characteristic mollusks of the Pamunkey Group (Lower Tertiary) and the Old Church Formation of the Chesapeake Group – Virginia Coastal Plain. U.S. Geol. Surv. Professional Pap. 1346, 1–78 (1985).

    • Google Scholar
  • 18.

    Hansen, T. A., Upshaw, B. III, Kauffman, E. G. & Gose, W. Patterns of molluscan extinction and recovery across the Cretaceous-Tertiary boundary in east Texas; report on new outcrops. Cretac. Res. 14, 685–706 (1993).

    • Article
    • Google Scholar
  • 19.

    Muscente, A. D. et al. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. P.N.A.S 115, 5217–5222 (2018).

  • 20.

    Muscente, A. D. et al. Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life. Nat. Commun. 10, 911, https://doi.org/10.1038/s41467-019-08837-3 (2019).

  • 21.

    Gregory, S. Finding overlapping communities in networks by label propagation. New Journal of Physics 12 (2010).

  • 22.

    Pons, P. & Latapy, M. In Computer and Information Sciences – ISCIS 2005 (eds. Yolum, P., Güngör, T., Gürgen, F. & Özturan, C.) (Springer-Verlag, 2005).

  • 23.

    Dockery, D. T. Punctuated succession of Paleogene mollusks in the northern Gulf Coastal Plain. Palaios 1, 582–589 (1986).

    • Article
    • Google Scholar
  • 24.

    Patzkowsky, M. E. & Holland, S. M. Stratigraphic Paleobiology: Understanding the distribution of fossil taxa in time and space. (University of Chicago Press, 2012).

  • 25.

    Dockery, D. T. In Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records 296–322 (1989).

  • 26.

    Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

    • Article
    • Google Scholar
  • 27.

    Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E. & Lu, Z. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography 29, 964–975 (2014).

  • 28.

    Thomas, E. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth? GSA Spec. Pap. 424, 1–23 (2007).

    • Google Scholar
  • 29.

    Zamagni, J., Mutti, M. & Košir, A. Evolution of shallow benthic communities during the Late Paleocene–earliest Eocene transition in the Northern. Tethys (SW Slovenia). Facies 54, 25–43 (2007).

    • Article
    • Google Scholar
  • 30.

    Rodríguez-Tovar, F. J., Uchman, A., Alegret, L. & Molina, E. Impact of the Paleocene–Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain. Mar. Geol. 282, 178–187 (2011).

  • 31.

    Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J. & Wilson, P. A. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Sci. 314, 1770–1773 (2006).

  • 32.

    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).

  • 33.

    Piazza, V., Duarte, L. V., Renaudie, J. & Aberhan, M. Reductions in body size of benthic macroinvertebrates as a precursor of the early Toarcian (Early Jurassic) extinction event in the Lusitanian Basin, Portugal. Paleobiology, 1–21 (2019).

  • 34.

    Hansen, T. A. Extinction of late Eocene to Oligocene molluscs: relationship to shelf area, temperature changes, and impact events. PALAIOS 2, 69–75 (1987).

  • 35.

    Foster, W. J. & Sebe, K. Recovery and diversification of marine communities following the late Permian mass extinction event in the western Palaeotethys. Glob. Planet. Change 155, 165–177 (2017).

  • 36.

    Song, H. et al. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132, https://doi.org/10.1038/srep04132 (2014).

  • 37.

    Aze, T. et al. Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. Geol. 42, 739–742 (2014).

  • 38.

    Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nat. 407, 887–890 (2000).

  • 39.

    Garvie, C. Microgastropod population changes from the early Cretaceous to the Recent in the Gulf Coastal Plain of the USA. Zoosymposia 1, 295–308 (2008).

    • Article
    • Google Scholar
  • 40.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nat. 486, 52–58 (2012).

  • 41.

    Gleason, L. U. & Burton, R. S. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol. Ecol. 24, 610–627 (2015).

  • 42.

    Gleason, L. U. & Burton, R. S. Phenotypic evidence for local adaptation to heat stress in the marine snail Chlorostoma (formerly Tegula) funebralis. J. Exp. Mar. Biol. Ecol. 448, 360–366 (2013).

  • 43.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nat. 528, 88–92 (2015).

  • 44.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nat. 451, 279–283 (2008).

  • 45.

    Dee, S. G., Torres, M. A., Martindale, R. C., Weiss, A. M. & DeLong, K. L. The future of reef ecosystems in the Gulf of Mexico: insights from coupled climate model simulations and ancient hot-house reefs. Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00691 (2019).

  • 46.

    Kemp, D. B., Eichenseer, K. & Kiessling, W. Maximum rates of climate change are systematically underestimated in the geological record. Nat. Commun. 6, 8890, https://doi.org/10.1038/ncomms9890 (2015).

  • 47.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic Interactions. Sci. 341, 499–504 (2013).

  • 48.

    Diaz, R. J. & Rosenburg, R. Spreading Dead Zones and consequences for marine ecosystems. Sci. 321, 926–929 (2008).

  • 49.

    Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).

    • Article
    • Google Scholar
  • 50.

    Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Gulf of Mexico Hypoxia, AKA “The Dead Zone”. Annu. Rev. Ecol. Syst. 33, 235–263 (2002).

    • Article
    • Google Scholar
  • 51.

    NOAA. Gulf of Mexico ‘dead zone’ is the largest ever measured, https://www.noaa.gov/media-release/gulf-of-mexico-dead-zone-is-largest-ever-measured (2017).

  • 52.

    Dickson, A. J. et al. The spread of marine anoxia on the northern Tethys margin during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 471–488 (2014).

  • 53.

    Sluijs, A. et al. Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Clim. Past. 10, 1421–1439 (2014).

    • Article
    • Google Scholar
  • 54.

    Zachos, J. C. et al. Rapid acidifcation of the ocean during the Paleocene-Eocene Thermal maximum. Nat. 308, 1611–1615 (2005).

    • CAS
    • Google Scholar
  • 55.

    Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 357–369 (2014).

  • 56.

    Byrne, M. In Oceanography and Marine Biology: An Annual Review Vol. 49 (eds R.N Gibsen, R.J.A Atkinson, & J.D.M Gordon) 42 (CRC Press, 2011).

  • 57.

    Ries, J. B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochimica et. Cosmochimica Acta 75, 4053–4064 (2011).

  • 58.

    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geol. 37, 1131–1134 (2009).

  • 59.

    Lebrato, M. et al. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Glob. Biogeochemical Cycles 30, 1038–1053 (2016).

  • 60.

    Sessa, J. A., Bralower, T. J., Patzkowsky, M. E., Handley, J. C. & Ivany, L.C. Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U.S. Gulf Coastal Plain. Paleobiology 38, 218–239 (2012).

  • 61.

    Alroy, J. In Quantitative Methods in Paleobiology Vol. 16 (eds John Alroy & Gene Hunt) 55–80 (The Paleontological Society Papers, 2010).

  • 62.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 63.

    Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26, 74–102 (2000).

    • Article
    • Google Scholar
  • 64.

    Clarke, K. R. & Warwick, R. M. Change in marine communities: An approach to statistical analysis and interpretation (2nd Edition). (PRIMER-E, 2002).

  • 65.

    Anderson, M. J. & Walsh, D. C. I. Permanova, Anosim, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Researchers develop a roadmap for growth of new solar cells

    Simple, solar-powered water desalination