in

Tritrophic interactions follow phylogenetic escalation and climatic adaptation

  • 1.

    Fraenkel, G. S. The raison d’être of secondary plant substances. Science 129, 1466–1470 (1959).

  • 2.

    Turlings, T. C. J. & Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63, 433–452, https://doi.org/10.1146/annurev-ento-020117-043507 (2018).

  • 3.

    Turlings, T. C. J., Tumlinson, J. H. & Lewis, W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253 (1990).

  • 4.

    Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737, https://doi.org/10.1038/Nature03451 (2005).

  • 5.

    Kessler, A. & Heil, M. The multiple faces of indirect defences and their agents of natural selection. Funct. Ecol. 25, 348–357, https://doi.org/10.1111/j.1365-2435.2010.01818.x (2011).

    • Article
    • Google Scholar
  • 6.

    Kergunteuil, A., Röder, G. & Rasmann, S. Environmental gradients and the evolution of tri-trophic interactions. Ecol. Lett. 22, 292–301, https://doi.org/10.1111/ele.13190 (2019).

  • 7.

    Agrawal, A. A. Induced responses to herbivory and increased plant performance. Science 279, 1201–1202 (1998).

  • 8.

    Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175, https://doi.org/10.1016/j.tplants.2009.12.002 (2010).

  • 9.

    Pichersky, E., Noel, J. P. & Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311, 808–811, https://doi.org/10.1126/science.1118510 (2006).

  • 10.

    Gould, S. J. & Lewontin, R. C. Spandrels of San-Marco and the Panglossian Paradigm – a Critique of the Adaptationist Program. Proceedings of the Royal Society of London Series B-Biological Sciences 205, 581–598 (1979).

  • 11.

    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).

    • Article
    • Google Scholar
  • 12.

    Futuyma, D. J. & Agrawal, A. A. Evolutionary history and species interactions. Proceedings of the National Academy of Sciences of the United States of America 106, 18043–18044, https://doi.org/10.1073/pnas.0910334106 (2009).

  • 13.

    Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78, 23–55 (2003).

    • Article
    • Google Scholar
  • 14.

    Defossez, E., Pellissier, L. & Rasmann, S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol. Lett. 21, 609–618, https://doi.org/10.1111/ele.12926 (2018).

  • 15.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).

  • 16.

    Fine, P. V. A., Mesones, I. & Coley, P. D. Herbivores promote habitat specialization by trees in amazonian forests. Science 305, 663–665 (2004).

  • 17.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology Evolution and Systematics 40, 245–269 (2009).

    • Article
    • Google Scholar
  • 18.

    Galmán, A. et al. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. J. Ecol. 106, 413–421, https://doi.org/10.1111/1365-2745.12866 (2018).

  • 19.

    Zhang, S., Zhang, Y. & Ma, K. Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J. Ecol. 104, 1089–1095, https://doi.org/10.1111/1365-2745.12588 (2016).

    • Article
    • Google Scholar
  • 20.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    • Article
    • Google Scholar
  • 21.

    Rasmann, S. & Agrawal, A. A. Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett. 14, 476–483, https://doi.org/10.1111/j.1461-0248.2011.01609.x (2011).

  • 22.

    Pearse, I. S. & Hipp, A. L. Global patterns of leaf defenses in oak species. Evolution 66, 2272–2286, https://doi.org/10.1111/j.1558-5646.2012.01591.x (2012).

  • 23.

    Moreira, X. et al. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol. Lett. 17, 537–546, https://doi.org/10.1111/ele.12253 (2014).

  • 24.

    Pellissier, L. et al. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution 2, 1818–1825, https://doi.org/10.1002/ece3.296 (2012).

  • 25.

    Moles, A. T. et al. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788, https://doi.org/10.1111/j.1469-8137.2011.03732.x (2011).

  • 26.

    Rasmann, S., Pellissier, L., Defossez, E., Jactel, H. & Kunstler, G. Climate-driven change in plant–insect interactions along elevation gradients. Funct. Ecol. 28, 46–54, https://doi.org/10.1111/1365-2435.12135 (2014).

    • Article
    • Google Scholar
  • 27.

    Johnson, M. T. J. & Rasmann, S. The latitudinal herbivory-defence hypothesis takes a detour on the map. New Phytol. 191, 589–592, https://doi.org/10.1111/j.1469-8137.2011.03816.x (2011).

  • 28.

    Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect-plant interactions: Insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293, https://doi.org/10.1016/0169-5347(91)90007-k (1991).

  • 29.

    Weiblen, G. D., Webb, C. O., Novotny, V., Basset, Y. & Miller, S. E. Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87, S62–S75 (2006).

    • Article
    • Google Scholar
  • 30.

    Ehrlich, P. R. & Raven, P. H. Butterflies and plants – a study in coevolution. Evolution 18, 586–608, https://doi.org/10.2307/2406212 (1964).

    • Article
    • Google Scholar
  • 31.

    Farrell, B. D. & Mitter, C. The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63, 553–577 (1998).

    • Google Scholar
  • 32.

    Vermeij, G. J. The evolutionary interaction among species: selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25, 219–236 (1994).

    • Article
    • Google Scholar
  • 33.

    Karban, R. & Baldwin, I. T. Induced responses to herbivory. 319 (The University of Chicago Press, 1997).

  • 34.

    Godschalx, A. L., Rodríguez-Castañeda, G. & Rasmann, S. Contribution of different predator guilds to tritrophic interactions along ecological clines. Current Opinion in Insect Science 32, 104–109, https://doi.org/10.1016/j.cois.2019.01.002 (2019).

  • 35.

    Rasmann, S. & Turlings, T. C. J. Root signals that mediate mutualistic interactions in the rhizosphere. Curr. Opin. Plant Biol. 32, 62–68, https://doi.org/10.1016/j.pbi.2016.06.017 (2016).

  • 36.

    Rasmann, S., Ali, J., Helder, J. & van der Putten, W. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol. 38, 615–628, https://doi.org/10.1007/s10886-012-0118-6 (2012).

  • 37.

    Degenhardt, J. et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America 106, 13213–13218 (2009).

  • 38.

    Kergunteuil, A., Humair, L., Münzbergová, Z. & Rasmann, S. Plant adaptation to different climates shapes the strengths of chemically mediated tritrophic interactions. Funct. Ecol. 33, 1893–1903, https://doi.org/10.1111/1365-2435.13396 (2019).

    • Article
    • Google Scholar
  • 39.

    Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002).

  • 40.

    Agrawal, A. A., Conner, J. K. & Rasmann, S. In Evolution After Darwin: the First 150 Years (eds Bell, M. A., Futuyma, D. J., Eanes, W. F. & Levinton, J. S.) 243–268 (Sinauer, 2010).

  • 41.

    Thaler, J. S. & Karban, R. A phylogenetic reconstruction of constitutive and induced resistance in. Gossypium. Am. Nat. 149, 1139–1146 (1997).

  • 42.

    Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).

    • Article
    • Google Scholar
  • 43.

    Steward, J. L. & Keeler, K. H. Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53, 79–86, https://doi.org/10.2307/3565666 (1988).

    • Article
    • Google Scholar
  • 44.

    Nagy, L. & Grabherr, G. The biology of alpine habitats. (Oxford University Press, 2009).

  • 45.

    Blomberg, S. P., Garland, T., Ives, A. R. & Crespi, B. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745, https://doi.org/10.1554/0014-3820(2003)057[0717:tfpsic]2.0.co;2 (2003).

  • 46.

    Sobhy, I. S., Miyake, A., Shinya, T. & Galis, I. Oral secretions affect HIPVs induced by generalist (Mythimna loreyi) and specialist (Parnara guttata) herbivores in rice. J. Chem. Ecol. 43, 929–943, https://doi.org/10.1007/s10886-017-0882-4 (2017).

  • 47.

    Catalán, P. In Plant Genome: Biodiversity and evolution Vol. 1D (eds A. K. Sharma & A. Sharma) Ch. 10, 255-303 (Enfield, 2006).

  • 48.

    Inda, L. A., Segarra-Moragues, J. G., Muller, J., Peterson, P. M. & Catalan, P. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol. Phylogen. Evol. 46, 932–957, https://doi.org/10.1016/j.ympev.2007.11.022 (2008).

  • 49.

    Minaya, M. et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44, 1980–1993, https://doi.org/10.1111/jbi.13012 (2017).

    • Article
    • Google Scholar
  • 50.

    Berenbaum, M. & Feeny, P. Toxicity of angular furanocoumarins to swallowtail butterflies – escalation in a co-evolutionary arms-race. Science 212, 927–929 (1981).

  • 51.

    Agrawal, A. A. & Fishbein, M. Phylogenetic escalation and decline of plant defense strategies. Proceedings of the National Academy of Sciences of the United States of America 105, 10057–10060, https://doi.org/10.1073/pnas.0802368105 (2008).

  • 52.

    Volf, M. et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 21, 83–92, https://doi.org/10.1111/ele.12875 (2018).

  • 53.

    Cacho, N. I., Kliebenstein, D. J. & Strauss, S. Y. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol. 208, 915–927, https://doi.org/10.1111/nph.13561 (2015).

  • 54.

    Rinnan, R., Steinke, M., McGenity, T. & Loreto, F. Plant volatiles in extreme terrestrial and marine environments. Plant Cell Environ 37, 1776–1789, https://doi.org/10.1111/pce.12320 (2014).

  • 55.

    Barkworth, M. E., Capels, K. M., Long, S., Anderton, L. K. & Piep, M. B. In Flora of North America: North of Mexico. Vol. 24 389–392 (Oxford University Press, Oxford, UK, 2007).

  • 56.

    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J.-P. Flora Alpina. (Haupt 2004).

  • 57.

    Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. Chemical analysis of ecological materials. (Blackwell Scientific Publications., 1974).

  • 58.

    Landolt, E. Flora indicativa. 1. edn, (Haupt Verlag, 2010).

  • 59.

    Caroli, L., Glazer, I. & Gaugler, R. Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts. Vol. 6 (1996).

  • 60.

    Lewis, G. C. & Clements, R. O. In Pest and Disease Management Handbook (ed David V. Alford) 84-122 (Blackwell Science Ltd, 2008).

  • 61.

    Hann, P., Trska, C., Wechselberger, K. F., Eitzinger, J. & Kromp, B. Phyllopertha horticola (Coleoptera: Scarabaeidae) larvae in eastern Austrian mountainous grasslands and the associated damage risk related to soil, topography and management. Springerplus 4, 139, https://doi.org/10.1186/s40064-015-0918-6 (2015).

  • 62.

    Dillman, A. R. & Sternberg, P. W. Entomopathogenic Nematodes. Curr. Biol. 22, R430–R431, https://doi.org/10.1016/j.cub.2012.03.047 (2012).

  • 63.

    Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. The abundance, diversity and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution 4, 1–12, https://doi.org/10.3389/fevo.2016.00084 (2016).

    • Article
    • Google Scholar
  • 64.

    Turlings, T., Hiltpold, I. & Rasmann, S. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358, 51–60, https://doi.org/10.1007/s11104-012-1295-3 (2012).

  • 65.

    Koppenhofer, A. M. & Fuzy, E. M. Effect of white grub developmental stage on susceptibility to entomopathogenic nematodes. J. Econ. Entomol. 97, 1842–1849 (2004).

    • Article
    • Google Scholar
  • 66.

    Rasmann, S., Erwin, A. C., Halitschke, R. & Agrawal, A. A. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99, 16–25 (2011).

  • 67.

    vegan: Community Ecology Package v. 2.0-10 http://vegan.r-forge.r-project.org/ (2013).

  • 68.

    effsize: Efficient Effect Size Computation (R package version 0.7.4, 2018).

  • 69.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. Journal of Statistical Software 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 70.

    Morris, W. F., Traw, M. B. & Bergelson, J. On testing for a tradeoff between constitutive and induced resistance. Oikos 112, 102–110 (2006).

    • Article
    • Google Scholar
  • 71.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223, https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).

    • Article
    • Google Scholar
  • 72.

    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22, 1–20 (2007).

    • Article
    • Google Scholar
  • 73.

    Orme, D. et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. (2013).

  • 74.

    Mazel, F. et al. Improving phylogenetic regression under complex evolutionary models. Ecology 97, 286–293, https://doi.org/10.1890/15-0086.1 (2016).


  • Source: Ecology - nature.com

    Researchers develop a roadmap for growth of new solar cells

    Simple, solar-powered water desalination