in

An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods

  • 1.

    FAO. FAOSTAT http://www.fao.org/faostat/en/#home (2019).

  • 2.

    Miettinen, J., Shi, C., Liew, S. & Land, C. cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    • Article
    • Google Scholar
  • 3.

    Hergoualc’h, K., Hendry, D. T., Murdiyarso, D. & Verchot, L. V. Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry. 135, 203–220 (2017).

    • Article
    • Google Scholar
  • 4.

    Tonks, A. J. et al. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma. 289, 36–45 (2017).

  • 5.

    Melling, L., Hatano, R. & Goh, K. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B 57, 1–11 (2005).

  • 6.

    Murdiyarso, D., Hergoualc’h, K. & Verchot, L. V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. PNAS. 107, 19655–19660 (2010).

  • 7.

    Page, S. E. et al. Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. (The International Council on Clean Transport, 2011).

  • 8.

    Germer, J. & Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716 (2008).

    • Article
    • Google Scholar
  • 9.

    Kho, L. K. & Jepsen, M. R. Carbon stock of oil palm plantations and tropical forests in Malaysia: A review. SJTG 36, 249–266 (2015).

    • Google Scholar
  • 10.

    Henson, I. E. & Dolmat, M. T. Physiological analysis of an oil palm density trial on a peat soil. J. Oil Palm. Res. 15, 1–27 (2003).

    • Google Scholar
  • 11.

    Corley, R. H. V., Gray, B. S. & Ng, S. K. Productivity of the oil palm (Elaeis guineensis Jacq.) in Malaysia. Exp. Agric. 7, 129–136 (1971).

    • Article
    • Google Scholar
  • 12.

    Khalid, H., Zin, Z. Z. & Anderson, J. M. Quantification of oil palm biomass and nutrient value in a mature plantation. I. Above-ground biomass. J. Oil Palm. Res. 11, 23–32 (1999).

    • CAS
    • Google Scholar
  • 13.

    Khalid, H., Zin, Z. Z. & Anderson, J. M. Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. J. Oil Palm. Res. 11, 63–71 (1999).

    • Google Scholar
  • 14.

    Kumar, L. & Mutanga, O. Remote sensing of above-ground biomass. Remote. Sens. 9, 935 (2017).

  • 15.

    Mitchard, E. T. The tropical forest carbon cycle and climate change. Nat. 559, 527–534 (2018).

  • 16.

    Gibbs, H. K., Brown, S., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

  • 17.

    Picard, N., Saint-André, L. & Henry, M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. (Food and Agricultural Organization of the United Nations, 2012).

  • 18.

    Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, 23533 (2011).

  • 19.

    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).

  • 20.

    Melling, L., Goh, K. J., Uyo, L. J., Sayok, A. & Hatano, O. Biophysical characteristics of tropical peatland. In: Proc. Conf. Peat and other soil factors in crop production (Ed. by Hamdan, J. et al.) Malaysian Society of Soil Science, Serdang, Selangor 110‐119, (2007).

  • 21.

    Carlson, K. M. et al. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. PNAS 109, 7559–7564 (2012).

  • 22.

    Carlson, K. M. et al. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Change. 3, 283 (2013).

  • 23.

    Corley, R. H. V. & Tinker, P. B. The oil palm. (John Wiley & Sons, 2016).

  • 24.

    Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. 2017. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).

    • Article
    • Google Scholar
  • 25.

    Corley, R. H. V. & Gray, B. S. Yield and yield components in Oil palm research (eds. Corley, R. H. V., Hardon, J. J. & Wood, B. J.), pp. 77–86, (Elsevier, 1976).

  • 26.

    Rees, A. R. & Tinker, P. B. H. Dry-matter production and nutrient content of plantation oil palms in Nigeria. Plant. Soil. 19, 19–32 (1963).

    • Article
    • Google Scholar
  • 27.

    Thomas, R. L., Chan, K. W. & Easau, P. T. Phyllotaxis in the oil palm: arrangement of fronds on the trunk of mature palms. Ann. Bot. 33, 1001–1008 (1969).

    • Article
    • Google Scholar
  • 28.

    Henson, I. E. The Malaysian national average oil palm: concept and evaluation. Oil Palm. B 46, 15–27 (2003).

    • Google Scholar
  • 29.

    Henson, I. E. OPRODSIM, a versatile, mechanistic simulation model of oil palm dry matter production and yield. In: Proc. Conf. PIPOC 2005 International Palm Oil Congress, Agriculture, Biotechnology and Sustainability Conference (801–832). Malaysian Palm Oil Board Kuala Lumpur (2005).

  • 30.

    Syahrinudin, S. The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. (ed. Vlek, P. L .G., Denich, M., Martius, C., Rodgers, C. & Giese, N. V. D.) (Ecology and Development Series, Cuvillier Verlag, Göttingen, 2005).

  • 31.

    Cook, S. et al. 2018. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences 15, 7435–7450 (2018).

  • 32.

    Lim, K. H., Lim, S. S, Parish. F. & Suharto, R. RSPO Manual on Best Management Practices (BMPs) for Existing Oil Palm Cultivation on Peat. (Roundtable on Sustainable Palm Oil, 2012).

  • 33.

    Othman, H., Mohammed, A. T., Harun, M. H., Darus, F. M. & Mos, H. Best management practises for oil palm planting on peat: optimum groundwater table. MPOB Inf. Ser. 528, 1–7 (2010).

    • Google Scholar
  • 34.

    Melling, L. & Henson, I. E. Greenhouse gas exchange of tropical peatlands–a review. J. Oil Palm. Res. 23, 1087–1095 (2011).

    • CAS
    • Google Scholar
  • 35.

    Veloo, R., Van Ranst, E. & Selliah, P. 2015. Peat characteristics and its impact on oil palm yield. NJAS. 72, 33–40 (2015).

    • Google Scholar
  • 36.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences. 7, 1505–1514 (2010).

  • 37.

    Henson, I. E., Betitis, T., Tomda, Y. & Chase, L. D. The estimation of frond base biomass (FBB) of oil palm. J. Oil Palm. Res. 24, 1473–1479 (2012).

    • Google Scholar
  • 38.

    Caliman, J. P., Carcasses, R., Girardin, P., Pujianto, D. B. & Liwang, T. ‘Development of agrienvironmental indicators for sustainable management of oil palm growing: general concept and the example of nitrogen.’ PIPOC 2005 International Palm Oil Congress: Agriculture, Biotechnology and Sustainability. Kuala Lumpur, Malaysia (2005).

  • 39.

    Khalid, H., Zin, Z. Z. & Anderson, J. M. Decomposition processes and nutrient release patterns of oil palm residues. J. Oil Palm. Res. 12, 46–63 (2000).

    • Google Scholar
  • 40.

    Henson, I. E. Modelling vegetative dry matter production of oil palm. Oil Palm. Bull. 52, 25–47 (2006).

    • Google Scholar
  • 41.

    Kwan, B. K. W. The effect of planting density on the first fifteen years of growth and yield of oil palm in Sabah (Sabah Department of Agriculture, 1994).

  • 42.

    Dolmat, M., Hamdan, A. B., Zulkifli, H. & Ahmad Tarmizi, M. Fertiliser requirement of oil palm on peat – an update. In: Proc. Conf.1996 PORIM International Palm Oil Congress: Competitiveness for the 21st century (eds. Ariffin et al.), Palm Oil Research Institute of Malaysia, Kuala Lumpur, 131–142 (1996).

  • 43.

    Aholoukpé, H. N. S. et al. Estimating aboveground biomass of oil palm: allometric equations for estimating frond biomass. Forest. Ecol. Manag. 292, 122–129 (2013).

    • Article
    • Google Scholar
  • 44.

    Morel, A. C. et al. Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. For. Ecol. Manag. 262, 1786–1798 (2011).

    • Article
    • Google Scholar
  • 45.

    Aholoukpè, H. N. S. et al. Allometric equations for estimating oil palm stem biomass in the ecological context of Benin, West Africa. Trees 32, 1669–1680 (2018).

    • Article
    • Google Scholar
  • 46.

    Dewi, S., Khasanah, N., Rahayu, S., Ekadinata A. & van Noordwijk, M. Carbon Footprint of Indonesian Palm Oil Production: a Pilot Study. (World Agroforestry Centre, 2009).

  • 47.

    Corley, R. H. V. Effects of plant density on growth and yield of oil palm. Exp. Agric. 9, 169–180 (1973).

    • Article
    • Google Scholar
  • 48.

    Hasnol, O., Darus, F. M. & Mohammed, A. T. Experiences in Peat Devalopment of Oil Palm Planting in the MPOB Research Station at Sessang, Sarawak. Oil Palm. Bulletin. 58, 1–13 (2009).

    • Google Scholar
  • 49.

    Dolmat, M., Hamdan, A. B. & Zulkifli, H. Novel agronomic innovations in the exploitation of peat for oil palm. In: Proc. 1993 PORIM International Palm Oil Congress: Agriculture (Ed. by Jalani, B. S. et al.), Palm Oil Research Institute of Malaysia, Kuala Lumpur, 360–372 (1995).

  • 50.

    Tie, Y. L. Long-term drainability of and water management in peat soil areas. Planter. 80, 423–439 (2004).

    • Google Scholar
  • 51.

    Lim, K. H. & Herry, W. ‘Management of leaning and fallen palms planted on tropical peat.’ IOPRI International Oil Palm Conference 2010. Yogyakarta, Indonesia (2010).

  • 52.

    Thenkabail, P. S. et al. Biomass estimations and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int. J. Remote. Sens. 25, 1–27 (2004).

    • Article
    • Google Scholar
  • 53.

    Henson, I. E. A Review of Models for Assessing Carbon Stocks and Carbon Sequestration in Oil Palm Plantations. J. Oil Palm. Res. 29, 1–10 (2017).

  • 54.

    Agus, F. et al. Review of emission factors for assessment of CO2 emission from land use change to oil palm in Southeast Asia. (Roundtable for Sustainable Palm Oil (RSPO), 2013).

  • 55.

    Cheng, S., Kirton, L. G. & Gurmit, S. Termite attack on oil palm grown on peat soil: identification of pest species and factors contributing to the problem. Plant. 84, 659–670 (2008).

    • Google Scholar
  • 56.

    Ariffin, D., Gurmit, S. & Lim, T. K. ‘Ganoderma in Malaysia – current status and research strategy’ 1989 International Palm Oil Development Conference, (eds. Jalani, B. S. et al.) Kuala Lumpur, Malaysia (1990).


  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health