in

Global determinants of freshwater and marine fish genetic diversity

  • 1.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–U1107 (2010).

  • 2.

    Gaston K., Blackburn T. Pattern and Process in Macroecology (Blackwell Science, 2009).

  • 3.

    Oberdorff, T. et al. Global and regional patterns in riverine fish species richness: a review. Int. J. Ecol. 2011, ID 967631 (2011).

    • Article
    • Google Scholar
  • 4.

    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

  • 5.

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

  • 6.

    National Academy of Sciences. In the Light of Evolution: Volume X: Comparative Phylogeography Avise, J. C., Ayala, F. J. eds (The National Academies Press, Washington, 2017).

  • 7.

    Manel, S., schwartz, M., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 157–206 (2003).

    • Article
    • Google Scholar
  • 8.

    Manel, S. et al. Long-distance benefits of marine reserves: myth or reality? Trends Ecol. Evol. 34, 342–354 (2019).

  • 9.

    Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six percent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12, 1505–11512 (2019).

  • 10.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

  • 11.

    Wiens J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

  • 12.

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689 (1997).

  • 13.

    Hoffmann, A. A., Sgro, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).

  • 14.

    Paz-Vinas, I. & Blanchet, S. Dendritic connectivity shapes spatial patterns of genetic diversity: a simulation-based study. J. Evol. Biol. 28, 986–994 (2015).

  • 15.

    Paz-Vinas I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).

  • 16.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

  • 17.

    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).

  • 18.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

  • 19.

    Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781 (2005).

    • Article
    • Google Scholar
  • 20.

    Vellend, M. Species diversity and genetic diversity: parallel processes and correlated patterns. Am. Nat. 166, 199–215 (2005).

  • 21.

    Laroche, F., Jarne, P., Lamy, T., David, P. & Massol, F. A neutral theory for interpreting correlations between species and genetic diversity in communities. Am. Nat. 185, 59–69 (2015).

  • 22.

    Stewart, L. et al. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Glob. Ecol. Biogeogr. 25, 430–442 (2016).

    • Article
    • Google Scholar
  • 23.

    Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    • Article
    • Google Scholar
  • 24.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

  • 25.

    Storch D., Bohdalková E., Okie J. The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity-diversity relationship. Ecol. Lett. 21, 920–937 (2017).

  • 26.

    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    • Article
    • Google Scholar
  • 27.

    Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol. 22, R900–R903 (2012).

  • 28.

    Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    • Article
    • Google Scholar
  • 29.

    Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).

  • 30.

    Willig, R., Kaufman, M. & Stevens, D. R. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 20, 273–309 (2003).

    • Article
    • Google Scholar
  • 31.

    Gratton, P. et al. Which latitudinal gradients for genetic diversity? Trends Ecol. Evol. 32, 724–726 (2017).

  • 32.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

  • 33.

    Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 115, 6249 (2018).

  • 34.

    May, R. M. Biological diversoty – differences between land and sea. Philos. Trans. R. Soc. B 343, 105–111 (1994).

  • 35.

    Carrete Vega, G. & Wiens John, J. Why are there so few fish in the sea? Proc. R. Soc. Lond. Ser. B 279, 2323–2329 (2012).

    • Article
    • Google Scholar
  • 36.

    Albouy C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).

    • Article
    • Google Scholar
  • 37.

    Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).

  • 38.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

  • 39.

    Gillman, L. N. & Wright, S. D. Species richness and evolutionary speed: the influence of temperature, water and area. J. Biogeogr. 41, 39–51 (2014).

    • Article
    • Google Scholar
  • 40.

    Grémillet D. et al. Spatial match–mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J. Appl. Ecol. 45, 610–621 (2008).

  • 41.

    Oppold, A.-M. et al. Support for the evolutionary speed hypothesis from intraspecific population genetic data in the non-biting midge Chironomus riparius. Proc. R. Soc. Lond. Ser. B 283, 20152413 (2016).

  • 42.

    Thomaz, A. T., Christie, M. R. & Knowles, L. L. The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution 70, 731–739 (2016).

  • 43.

    Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P. & Treml, E. A. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr. Zool. 62, 581–601 (2016).

  • 44.

    Morrissey, M. B. & de Kerckhove, D. T. The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am. Nat. 174, 875–889 (2009).

  • 45.

    Labonne, J., Ravigné, V., Parisi, B. & Gaucherel, C. Linking dendritic network structures to population demogenetics: the downside of connectivity. Oikos 117, 1479–1490 (2008).

    • Article
    • Google Scholar
  • 46.

    Benda, L. et al. The Network Dynamics Hypothesis: how channel networks structure riverine habitats. BioScience 54, 413–427 (2004).

    • Article
    • Google Scholar
  • 47.

    Altermatt F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365–377 (2013).

    • Article
    • Google Scholar
  • 48.

    Lévêque C., Oberdorff T., Paugy D., Stiassny M., Tedesco P. Freshwater Animal Diversity Assessment. Developments in Hydrobiology (Springer, Dordrecht, 2008).

  • 49.

    Oberdorff, T., Guegan, J. F. & Hugueny, B. Global scale patterns of fish species richness in rivers. Ecography 18, 345–352 (1995).

    • Article
    • Google Scholar
  • 50.

    Guegan, J. F., Lek, S. & Oberdorff, T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384 (1998).

  • 51.

    Dias, M. S. et al. Global imprint of historical connectivity on freshwater fish biodiversity. Ecol. Lett. 17, 1130–1140 (2014).

  • 52.

    Antonelli, A. & Sanmartín, I. Why are there so many plant species in the Neotropics? Taxon 60, 403–414 (2011).

    • Article
    • Google Scholar
  • 53.

    Wiens, J., Alexander Pyron, R. & Moen, D. Phylogenetic origins of local-scale diversity patterns and causes of Amazonian megadiversity. Ecol. Lett. 14, 643–652 (2011).

  • 54.

    Fourtune, L., Paz-Vinas, I., Loot, G., Prunier, J. G. & Blanchet, S. Lessons from the fish: a multi-species analysis reveals common processes underlying similar species-genetic diversity correlations. Freshw. Biol. 61, 1830–1845 (2016).

    • Article
    • Google Scholar
  • 55.

    Romiguier J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).

  • 56.

    Fortin M.-J., Dale M. Spatial analysis. A guide for ecologists. Vol. 365 (Cambridge University Press, New York, 2005).

  • 57.

    Cheung, W., Pauly, D. L. & Sarmiento, J. How to make progress in projecting climate change impacts. J. ICES J. Mar. Sci. 70, 1069–1074 (2013).

    • Article
    • Google Scholar
  • 58.

    Lamy, T. et al. Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Mol. Ecol. 22, 4445–4456 (2013).

  • 59.

    Taberlet, P. et al. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecol. Lett. 15, 1439–1448 (2012).

  • 60.

    Whitlock, R. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis. J. Ecol. 102, 857–872 (2014).

  • 61.

    Cinner J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA. 115, E6116–E6125 (2018).

  • 62.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141 (2017).

  • 63.

    Schlötterer C., Tobler R., Kofler R., Nolte V. Sequencing pools of individuals – mining genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15, 749–763 (2014).

  • 64.

    Tishkoff, S. A. & Verrelli, B. C. Patterns of human genetic diversity: Implications for human evolutionary history and disease. Ann. Rev. Genomics Hum. Genet. 4, 293–340 (2003).

  • 65.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  • 66.

    Okonechnikov, K., Golosova, O. & Fursov, M. the Ut. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).

  • 67.

    Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).

  • 68.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269 (1979).

  • 69.

    Briggs J. Biogeography and plate tectonics, Vol. 10 (Amsterdam, Elsevier, 1987).

  • 70.

    Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2018).

    • Article
    • Google Scholar
  • 71.

    Tedesco, P. A. et al. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4, 170141 (2017).

  • 72.

    Marin, J. & Hedges, S. B. Time best explains global variation in species richness of amphibians, birds and mammals. J. Biogeogr. 43, 1069–1079 (2016).

    • Article
    • Google Scholar
  • 73.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384 (2007).

  • 74.

    Clifford, P., Richardson, S. & Hemon, D. Assessing the significance of the correlation be- tween two spatial processes. Biometrics 45, 123–134 (1989).

  • 75.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health