in

Climate warming disrupts mast seeding and its fitness benefits in European beech

  • 1.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    • Article
    • Google Scholar
  • 2.

    Zohner, C. M., Mo, L. & Renner, S. S. Global warming reduces leaf-out and flowering synchrony among individuals. eLife 7, e40214 (2018).

  • 3.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

  • 4.

    Luo, Y., McIntire, E. J. B., Boisvenue, C., Nikiema, P. P. & Chen, H. Y. H. Climatic change only stimulated growth for trees under weak competition in central boreal forests. J. Ecol. 108, 36–46 (2019).

  • 5.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

  • 6.

    Koenig, W. D. et al. Is the relationship between mast-seeding and weather in oaks related to their life-history or phylogeny? Ecology 97, 2603–2615 (2016).

  • 7.

    McKone, M. J., Kelly, D. & Lee, W. G. Effect of climate change on mast-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob. Change Biol. 4, 591–596 (1998).

    • Article
    • Google Scholar
  • 8.

    Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol. 215, 595–608 (2017).

  • 9.

    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).

  • 10.

    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in European forests. New Phytol. 213, 669–679 (2017).

  • 11.

    Monks, A., Monks, J. M. & Tanentzap, A. J. Resource limitation underlying multiple masting models makes mast seeding sensitive to future climate change. New Phytol. 210, 419–430 (2016).

  • 12.

    Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).

  • 13.

    Bogdziewicz, M., Crone, E. E., Steele, M. A. & Zwolak, R. Effects of nitrogen deposition on reproduction in a masting tree: benefits of higher seed production are trumped by negative biotic interactions. J. Ecol. 105, 310–320 (2017).

  • 14.

    Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).

  • 15.

    Koenig, W. D., Knops, J. M., Carmen, W. J. & Pearse, I. S. What drives masting? The phenological synchrony hypothesis. Ecology 96, 184–192 (2015).

  • 16.

    Kelly, D., Hart, D. E. & Allen, R. B. Evaluating the wind pollination benefits of mast seeding. Ecology 82, 117–126 (2001).

    • Article
    • Google Scholar
  • 17.

    Rees, M., Kelly, D. & Bjørnstad, O. N. Snow tussocks, chaos, and the evolution of mast seeding. Am. Nat. 160, 44–59 (2002).

  • 18.

    Tachiki, Y. & Iwasa, Y. Both seedling banks and specialist seed predators promote the evolution of synchronized and intermittent reproduction (masting) in trees. J. Ecol. 98, 1398–1408 (2010).

    • Article
    • Google Scholar
  • 19.

    Norton, D. A. & Kelly, D. Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct. Ecol. 2, 399–408 (1988).

  • 20.

    Rapp, J. M., McIntire, E. J. & Crone, E. E. Sex allocation, pollen limitation and masting in whitebark pine. J. Ecol. 101, 1345–1352 (2013).

    • Article
    • Google Scholar
  • 21.

    Moreira, X., Abdala-Roberts, L., Linhart, Y. B. & Mooney, K. A. Masting promotes individual- and population-level reproduction by increasing pollination efficiency. Ecology 95, 801–807 (2014).

  • 22.

    Linhart, Y. B., Moreira, X., Snyder, M. A. & Mooney, K. A. Variability in seed cone production and functional response of seed predators to seed cone availability: support for the predator satiation hypothesis. J. Ecol. 102, 576–583 (2014).

    • Article
    • Google Scholar
  • 23.

    Kelly, D. et al. Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae). Oikos 90, 477–488 (2000).

    • Article
    • Google Scholar
  • 24.

    Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests. Ecology 89, 805–817 (2008).

  • 25.

    Kelly, D. & Sork, V. L. Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Syst. 33, 427–447 (2002).

    • Article
    • Google Scholar
  • 26.

    Bogdziewicz, M., Steele, M. A., Marino, S. & Crone, E. E. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants. New Phytol. 219, 98–108 (2018).

  • 27.

    Pearse, I. S., LaMontagne, J. M. & Koenig, W. D. Inter-annual variation in seed production has increased over time (1900–2014). Proc. R. Soc. B 284, 20171666 (2017).

  • 28.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

  • 29.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  • 30.

    Koenig, W. D. et al. Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos 102, 581–591 (2003).

    • Article
    • Google Scholar
  • 31.

    Bogdziewicz, M. et al. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production. Ecology 98, 2615–2625 (2017).

  • 32.

    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).

    • Article
    • Google Scholar
  • 33.

    Richardson, S. J. et al. Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 86, 972–981 (2005).

    • Article
    • Google Scholar
  • 34.

    Buechling, A., Martin, P. H., Canham, C. D., Shepperd, W. D. & Battaglia, M. A. Climate drivers of seed production in Picea engelmannii and response to warming temperatures in the southern Rocky Mountains. J. Ecol. 104, 1051–1062 (2016).

  • 35.

    Satake, A. & Bjørnstad, O. N. Spatial dynamics of specialist seed predators on synchronized and intermittent seed production of host plants. Am. Nat. 163, 591–605 (2004).

  • 36.

    Bogdziewicz, M., Shealyn, M., Bonal, R., Zwolak, R. & Steele, M. A. Rapid aggregative and reproductive responses of weevils to masting of North American oaks counteract predator satiation. Ecology 99, 2575–2582 (2018).

    • Article
    • Google Scholar
  • 37.

    Verheyen, K. et al. Juniperus communis: victim of the combined action of climate warming and nitrogen deposition? Plant Biol. 11, 49–59 (2009).

  • 38.

    Zwolak, R., Bogdziewicz, M., Wróbel, A. & Crone, E. E. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 180, 749–758 (2016).

    • Article
    • Google Scholar
  • 39.

    Jensen, T. S. Seed–seed predator interactions of European beech, Fagus silvatica and forest rodents, Clethrionomys glareolus and Apodemus flavicollis. Oikos 44, 149–156 (1985).

    • Article
    • Google Scholar
  • 40.

    Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).

    • Google Scholar
  • 41.

    Satake, A. & Iwasa, Y. O. H. Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J. Theor. Biol. 203, 63–84 (2000).

  • 42.

    Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. NY Acad. Sci. 1322, 21–34 (2014).

  • 43.

    Satake, A. & Bjørnstad, O. N. A resource budget model to explain intraspecific variation in mast reproductive dynamics. Ecol. Res. 23, 3–10 (2008).

    • Article
    • Google Scholar
  • 44.

    Sykes, M. T., Prentice, I. C. & Cramer, W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 23, 203–233 (1996).

    • Google Scholar
  • 45.

    Vacchiano, G. et al. Reproducing reproduction: how to simulate mast seeding in forest models. Ecol. Modell. 376, 40–53 (2018).

    • Article
    • Google Scholar
  • 46.

    Penuelas, J. & Boada A global change‐induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).

    • Article
    • Google Scholar
  • 47.

    Jump, A. S., Hunt, J. M. & Penuelas, J. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, northeast Spain. Ecoscience 14, 507–518 (2007).

    • Article
    • Google Scholar
  • 48.

    Clement, J. et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. Int. J. Health Geogr. 8, 1 (2009).

  • 49.

    Bogdziewicz, M., Zwolak, R. & Crone, E. E. How do vertebrates respond to mast seeding? Oikos 125, 300–307 (2016).

    • Article
    • Google Scholar
  • 50.

    Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrstrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).

  • 51.

    Szymkowiak, J. & Thomson, R. L. Nest predator avoidance during habitat selection of a songbird varies with mast peaks and troughs. Behav. Ecol. Sociobiol. 73, 91 (2019).

    • Article
    • Google Scholar
  • 52.

    Schmidt, K. A. & Ostfeld, R. S. Numerical and behavioral effects within a pulse-driven system: consequences for shared prey. Ecology 89, 635–646 (2008).

  • 53.

    Elliott, G. & Kemp, J. Large-scale pest control in New Zealand beech forests. Ecol. Manag. Restor. 17, 200–209 (2016).

    • Article
    • Google Scholar
  • 54.

    Bogdziewicz, M. et al. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol. Lett. 23, 210–220 (2020).

  • 55.

    Nilsson, S. G. & Wastljung, U. Seed predation and cross-pollination in mast-seeding beech (Fagus sylvatica) patches. Ecology 68, 260–265 (1987).

    • Article
    • Google Scholar
  • 56.

    Packham, J. R., Thomas, P. A., Lageard, J. G. A. & Hilton, G. M. The English beech masting survey 1980–2007: variation in the fruiting of the common beech (Fagus sylvatica L.) and its effects on woodland ecosystems. Arboric. J. 31, 189–214 (2008).

    • Article
    • Google Scholar
  • 57.

    Dore, A. J. et al. The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads. Biogeosciences 9, 1597–1609 (2012).

  • 58.

    Tipping, E. et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci. Rep. 7, 1–11 (2017).

  • 59.

    Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

    • Article
    • Google Scholar
  • 60.

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73 (2019).

  • 61.

    Fernández-Martínez, M. et al. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632 (2017).

  • 62.

    Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).

  • 63.

    Drobyshev, I. et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For. Ecol. Manag. 259, 2160–2171 (2010).

    • Article
    • Google Scholar
  • 64.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2003).

  • 65.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    • Article
    • Google Scholar
  • 66.

    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v.0.1.5 (CRAN, 2017).

  • 67.

    Tavares, H. windowscanr: Apply functions using sliding windows. R package version v.0.1 (RDRR, 2019).


  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health