in

Marine clade sensitivities to climate change conform across timescales

  • 1.

    Harnik, P. G. et al. Extinction in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).

    • Article
    • Google Scholar
  • 2.

    Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015).

  • 3.

    Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    • Article
    • Google Scholar
  • 4.

    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

  • 5.

    Reddin, C. J., Kocsis, Á. T. & Kiessling, W. Climate change and the latitudinal selectivity of ancient marine extinctions. Paleobiology 45, 70–84 (2019).

    • Article
    • Google Scholar
  • 6.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    • Article
    • Google Scholar
  • 7.

    Calosi, P., Putnam, H. M., Twitchett, R. J. & Vermandele, F. Marine metazoan modern mass extinction: improving predictions by integrating fossil, modern, and physiological data. Annu. Rev. Mar. Sci. 11, 13–25 (2019).

    • Article
    • Google Scholar
  • 8.

    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

  • 9.

    Foster, G. L., Hull, P., Lunt, D. J. & Zachos, J. C. Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past. Phil. Trans. R. Soc. A 376, 20170086 (2018).

  • 10.

    Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).

    • Article
    • Google Scholar
  • 11.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    • Article
    • Google Scholar
  • 12.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

  • 13.

    Cahill, A. E. et al. How does climate change cause extinction?. Proc. R. Soc. B 280, 20121890 (2013).

    • Article
    • Google Scholar
  • 14.

    Kemp, D. B., Eichenseer, K. & Kiessling, W. Maximum rates of climate change are systematically underestimated in the geological record. Nat. Commun. 6, 8890 (2015).

  • 15.

    Wittmann, A. C. & Pörtner, H. O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Change 3, 995–1001 (2013).

  • 16.

    Storch, D., Menzel, L., Frickenhaus, S. & Pörtner, H. O. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Glob. Change Biol. 20, 3059–3067 (2014).

    • Article
    • Google Scholar
  • 17.

    Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).

    • Article
    • Google Scholar
  • 18.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    • Article
    • Google Scholar
  • 19.

    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).

    • Article
    • Google Scholar
  • 20.

    Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

    • Article
    • Google Scholar
  • 21.

    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).

    • Article
    • Google Scholar
  • 22.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1136 (2015).

  • 23.

    Kroeker, K. J., Kordas, R. L. & Harley, C. D. G. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).

  • 24.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

  • 25.

    Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).

    • Article
    • Google Scholar
  • 26.

    Saupe, E. E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B 281, 20141995 (2014).

    • Article
    • Google Scholar
  • 27.

    Hopkins, M. J., Simpson, C. & Kiessling, W. Differential niche dynamics among major marine invertebrate clades. Ecol. Lett. 17, 314–323 (2014).

    • Article
    • Google Scholar
  • 28.

    Peters, S. E. Environmental determinants of extinction selectivity in the fossil record. Nature 454, 626–629 (2008).

  • 29.

    Schoene, B., Guex, J., Bartolini, A., Schaltegger, U. & Blackburn, T. J. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38, 387–390 (2010).

  • 30.

    Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005).

    • Article
    • Google Scholar
  • 31.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–459 (2012).

  • 32.

    Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).

  • 33.

    Wernberg, T., Smale, D. A. & Thomsen, M. S. A decade of climate change experiments on marine organisms: procedures, patterns and problems. Glob. Change Biol. 18, 1491–1498 (2012).

    • Article
    • Google Scholar
  • 34.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    • Article
    • Google Scholar
  • 35.

    Tummers, B. DataThief III v.1.7 (2006); https://datathief.org

  • 36.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    • Article
    • Google Scholar
  • 37.

    Woods, H. A., Harrison, J. F. & Merila, J. Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive? Evolution 56, 1863–1866 (2002).

    • Article
    • Google Scholar
  • 38.

    Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M. & Sperling, E. A. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proc. R. Soc. B 285, 20181724 (2018).

  • 39.

    Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species v.08/2016 (2016); www.aquamaps.org

  • 40.

    Valentine, J. W. Temporal bias in extinctions among taxonomic categories. J. Paleontol. 48, 549–552 (1974).

    • Google Scholar
  • 41.

    Bambach, R. K., Knoll, A. H. & Sepkoski, J. J. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc. Natl Acad. Sci. USA 99, 6854–6859 (2002).

  • 42.

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

  • 43.

    Harrison, F. Getting started with meta-analysis. Methods Ecol. Evol. 2, 1–10 (2011).

    • Article
    • Google Scholar
  • 44.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  • 45.

    Gurevitch, J., Morrison, J. A. & Hedges, L. V. The Interaction between competition and predation: a meta‐analysis of field experiments. Am. Nat. 155, 435–453 (2000).

    • Article
    • Google Scholar
  • 46.

    Rosenberg, M., Rothstein, H. & Gurevitch, J. in Handbook of Meta-Analysis in Ecology and Evolution (eds. Koricheva, J. et al.) 61–71 (Princeton Univ. Press, 2013).

  • 47.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    • Article
    • Google Scholar
  • 48.

    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

  • 49.

    Higgins, J. P. T. & Green, S. in Cochrane Handbook for Systematic Reviews of Interventions (eds. Higgins, J. P. T. & Green, S.) Ch. 9 (Wiley, 2005).

  • 50.

    Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).

    • Article
    • Google Scholar
  • 51.

    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256 (2009).

  • 52.

    Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7 (2013).

  • 53.

    Kocsis, Á. T., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 45, 70–84 (2019).

    • Google Scholar
  • 54.

    Alroy, J. A more precise speciation and extinction rate estimator. Paleobiology 41, 633–639 (2015).

    • Article
    • Google Scholar
  • 55.

    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

  • 56.

    McKinney, M. L. & Oyen, C. W. Causation and nonrandomness in biological and geological time series: temperature as a proximal control of extinction and diversity. Palaios 4, 3–15 (1989).

    • Article
    • Google Scholar
  • 57.

    Emad, A. & Bailey, P. wCorr: Weighted correlations. R package version 1.9.1 (2017).

  • 58.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health