in

Global patterns of terrestrial nitrogen and phosphorus limitation

  • 1.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    • Article
    • Google Scholar
  • 2.

    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    • Article
    • Google Scholar
  • 3.

    Yuan, Z. Y. & Chen, H. Y. A global analysis of fine root production as affected by soil nitrogen and phosphorus. Proc. R. Soc. B 279, 3796–3802 (2012).

    • Article
    • Google Scholar
  • 4.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    • Article
    • Google Scholar
  • 5.

    Walker, T. W. & Syers, J. K. Fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    • Article
    • Google Scholar
  • 6.

    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).

    • Article
    • Google Scholar
  • 7.

    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).

    • Article
    • Google Scholar
  • 8.

    Houlton, B. Z., Wang, Y. P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    • Article
    • Google Scholar
  • 9.

    Menge, D. N. L. et al. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140 (2017).

    • Article
    • Google Scholar
  • 10.

    Deng, M. et al. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat. Ecol. Evol. 2, 1724–1734 (2018).

    • Article
    • Google Scholar
  • 11.

    Pellegrini, A. F. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    • Article
    • Google Scholar
  • 12.

    Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus‐rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).

    • Article
    • Google Scholar
  • 13.

    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    • Article
    • Google Scholar
  • 14.

    Du, E. et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos. Chem. Phys. 16, 8571–8579 (2016).

    • Article
    • Google Scholar
  • 15.

    Pardo, L. H. et al. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80, 143–171 (2006).

    • Article
    • Google Scholar
  • 16.

    Tian, D., Wang, H., Sun, J. & Niu, S. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environ. Res. Lett. 11, 024012 (2016).

    • Article
    • Google Scholar
  • 17.

    Crowley, K. F. et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States? Ecosystems 15, 940–957 (2012).

    • Article
    • Google Scholar
  • 18.

    Johnson, D. W. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87, 64–75 (2006).

    • Article
    • Google Scholar
  • 19.

    Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).

    • Article
    • Google Scholar
  • 20.

    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    • Article
    • Google Scholar
  • 21.

    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    • Article
    • Google Scholar
  • 22.

    Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).

    • Article
    • Google Scholar
  • 23.

    Tessier, J. T. & Raynal, D. J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J. Appl. Ecol. 40, 523–534 (2003).

    • Article
    • Google Scholar
  • 24.

    Güsewell, S. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266 (2004).

    • Article
    • Google Scholar
  • 25.

    Sullivan, B. W. et al. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology 95, 668–681 (2014).

    • Article
    • Google Scholar
  • 26.

    Yan, Z., Tian, D., Han, W., Tang, Z. & Fang, J. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Ann. Bot. (Lond.) 120, 937–942 (2017).

    • Article
    • Google Scholar
  • 27.

    Kobe, R. K., Lepczyk, C. A. & Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86, 2780–2792 (2005).

    • Article
    • Google Scholar
  • 28.

    Yuan, Z. Y. & Chen, H. Y. Negative effects of fertilization on plant nutrient resorption. Ecology 96, 373–380 (2015).

    • Article
    • Google Scholar
  • 29.

    Han, W., Tang, L., Chen, Y. & Fang, J. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS ONE 8, e83366 (2013).

    • Article
    • Google Scholar
  • 30.

    Reed, S. C., Townsend, A. R., Davidson, E. A. & Cleveland, C. C. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol. 196, 173–180 (2012).

    • Article
    • Google Scholar
  • 31.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).

  • 32.

    Hooker, H. D. Liebig’s law of the minimum in relation to general biological problems. Science 46, 197–204 (1917).

    • Article
    • Google Scholar
  • 33.

    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).

    • Article
    • Google Scholar
  • 34.

    McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).

    • Article
    • Google Scholar
  • 35.

    Yuan, Z. Y. & Chen, H. Y. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 18, 11–18 (2009).

    • Article
    • Google Scholar
  • 36.

    Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Change Biol. 23, 3808–3824 (2017).

    • Article
    • Google Scholar
  • 37.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    • Article
    • Google Scholar
  • 38.

    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).

    • Article
    • Google Scholar
  • 39.

    Juice, S. M. et al. Response of sugar maple to calcium addition to northern hardwood forest. Ecology 87, 1267–1280 (2006).

    • Article
    • Google Scholar
  • 40.

    Luo, Y., Su, B., Currie, W. S. & Dukes, J. S. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    • Article
    • Google Scholar
  • 41.

    Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002).

    • Article
    • Google Scholar
  • 42.

    Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).

    • Article
    • Google Scholar
  • 43.

    Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences 3rd edn (Erlbaum, 2003).

  • 44.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    • Article
    • Google Scholar
  • 45.

    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    • Article
    • Google Scholar
  • 46.

    Pena, E. A. & Slate, E. H. Global validation of linear model assumptions. J. Am. Stat. Assoc. 101, 341–354 (2006).

    • Article
    • Google Scholar
  • 47.

    Fox, J., Friendly, M. & Weisberg, S. Hypothesis tests for multivariate linear models using the car package. R J. 5, 39–52 (2013).

    • Article
    • Google Scholar
  • 48.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    • Article
    • Google Scholar
  • 49.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    • Article
    • Google Scholar
  • 50.

    De Boeck, P. et al. The estimation of item response models with the lmer function from the lme4 package in R. J. Stat. Softw. 39, 1–28 (2011).

    • Article
    • Google Scholar
  • 51.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1548–7660 (2017).

    • Article
    • Google Scholar
  • 52.

    Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56–71 (2013).

    • Article
    • Google Scholar
  • 53.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    • Google Scholar
  • 54.

    Probst, P., Wright, M. N. & Boulesteix, A. L. Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 9, e1301 (2019).

    • Google Scholar
  • 55.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health