in

Ecological scaffolding and the evolution of individuality

  • 1.

    Buss, L. W. The Evolution of Individuality (Princeton Univ. Press, 1987).

  • 2.

    Maynard Smith, J. & Szathmáry, E. The Major Transitions in Evolution (Freeman, 1995).

  • 3.

    Okasha, S. Evolution and the Levels of Selection (Oxford Univ. Press, 2006).

  • 4.

    Michod, R. E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality (Princeton Univ. Press, 1999).

  • 5.

    Godfrey-Smith, P. Darwinian Populations and Natural Selection (Oxford Univ. Press, 2009).

  • 6.

    Hull, D. L. Individuality and selection. Annu. Rev. Ecol. Syst. 11, 311–332 (1980).

    • Article
    • Google Scholar
  • 7.

    Rainey, P. B. & Kerr, B. Cheats as first propagules: a new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. Bioessays 32, 872–880 (2010).

    • Article
    • Google Scholar
  • 8.

    Libby, E. & Rainey, P. B. A conceptual framework for the evolutionary origins of multicellularity. Phys. Biol. 10, 035001 (2013).

    • Article
    • Google Scholar
  • 9.

    De Monte, S. & Rainey, P. B. Nascent multicellular life and the emergence of individuality. J. Biosci. 39, 237–248 (2014).

    • PubMed
    • Google Scholar
  • 10.

    Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Syst. 1, 1–18 (1970).

    • Article
    • Google Scholar
  • 11.

    Griesemer, J. The units of evolutionary transition. Selection 1, 67–80 (2000).

    • Article
    • Google Scholar
  • 12.

    Bourrat, P. From survivors to replicators: evolution by natural selection revisited. Biol. Phil. 29, 517–538 (2014).

    • Article
    • Google Scholar
  • 13.

    Rainey, P. B. & De Monte, S. Resolving conflicts during the evolutionary transition to multicellular life. Annu. Rev. Ecol. Evol. Syst. 45, 599–620 (2014).

    • Article
    • Google Scholar
  • 14.

    Okasha, S. The strategy of endogenization in evolutionary biology. Synthese https://doi.org/10.1007/s11229-018-1832-6 (2018).

  • 15.

    Hanschen, E. R. et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat. Commun. 7, 11370 (2016).

  • 16.

    Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).

    • Article
    • Google Scholar
  • 17.

    Wade, M. J. Adaptation in Metapopulations: How Interactions Change Evolution (Univ. Chicago Press, 2016).

  • 18.

    Caporael, L. R., Griesemer, J. R. & Wimsatt, W. C. (eds) Developing Scaffolds in Evolution, Culture, and Cognition (Vienna Series in Theoretical Biology, MIT Press, 2014).

  • 19.

    Hammerschmidt, K., Rose, C., Kerr, B. & Rainey, P. B. Life cycles, fitness decoupling and the evolution of multicellularity. Nature 515, 75–79 (2014).

  • 20.

    Rose, C. J., Hammerschmidt, K., Pichugin, Y. & Rainey, P. B. Meta-population structure and the evolutionary transition to multicellularity. Preprint at bioRxiv https://doi.org/10.1101/407163 (2019).

  • 21.

    Rainey, P. B., Remigi, P., Farr, A. D. & Lind, P. A. Darwin was right: where now for experimental evolution? Curr. Opin. Genet. Dev. 47, 102–109 (2017).

  • 22.

    Van Valen, L. Energy and evolution. Evol.Theory 1, 179–229 (1976).

    • Google Scholar
  • 23.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

  • 24.

    Wright, S. Tempo and mode in evolution: a critical review. Ecology 26, 415–419 (1945).

    • Article
    • Google Scholar
  • 25.

    Wright, S. Evolution and the Genetics of Populations: Experimental Results and Evolutionary Deductions Vol. 3 (Univ. Chicago Press, 1977).

  • 26.

    Maynard Smith, J. Group selection and kin selection. Nature 201, 1145–1146 (1964).

    • Article
    • Google Scholar
  • 27.

    Wilson, D. S. A theory of group selection. Proc. Natl Acad Sci. USA 72, 143–146 (1975).

  • 28.

    Goodnight, C. J. & Stevens, L. Experimental studies of group selection: what do they tell us about group selection in nature? Am. Nat. 150, S59–S79 (1997).

    • Article
    • Google Scholar
  • 29.

    Traulsen, A. & Nowak, M. A. Evolution of cooperation by multilevel selection. Proc. Natl Acad. Sci. USA 103, 10952–10955 (2006).

  • 30.

    Simon, B., Fletcher, J. A. & Doebeli, M. Towards a general theory of group selection. Evolution 67, 1561–1572 (2012).

    • Article
    • Google Scholar
  • 31.

    Black, A. J. & McKane, A. J. Stochastic formulation of ecological models and their applications. Trends Ecol. Evol. 27, 337–345 (2012).

    • Article
    • Google Scholar
  • 32.

    Heisler, I. L. & Damuth, J. A method for analyzing selection in hierarchically structured populations. Am. Nat. 130, 582–602 (1987).

    • Article
    • Google Scholar
  • 33.

    Michod, R. E. & Roze, D. Transitions in individuality. Proc. R. Soc. B 264, 853–857 (1997).

  • 34.

    Michod, R. E. & Nedelcu, A. M. On the reorganization of fitness during evolutionary transitions in individuality. Integr. Comp. Biol. 43, 64–73 (2003).

  • 35.

    Clarke, E. The problem of biological individuality. Biol. Theory 5, 312–325 (2010).

    • Article
    • Google Scholar
  • 36.

    Bourrat, P. Levels of selection are artefacts of different temporal fitness measures. Ratio 28, 40–50 (2015).

    • Article
    • Google Scholar
  • 37.

    Bourrat, P. Levels, time and fitness in evolutionary transitions in individuality. Philos. Theor. Biol. 7, e601 (2015).

    • Google Scholar
  • 38.

    Michod, R. E. & Roze, D. in Mathematical and Computational Biology: Computational Morphogenesis, Hierarchical Complexity, and Digital Evolution (ed. Nehaniv, C.L.) 47–92 (American Mathematical Society, 1999).

  • 39.

    Birch, J. Kin selection, group selection, and the varieties of population structure. Br. J. Philos. Sci. https://doi.org/10.1093/bjps/axx028 (2018).

  • 40.

    Libby, E. & Ratcliff, W. C. Ratcheting the evolution of multicellularity. Science 346, 426–427 (2014).

  • 41.

    Gallie, J. et al. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens. PLoS Biol. 13, e1002109 (2015).

  • 42.

    Gallie, J. et al. Repeated phenotypic evolution by different genetic routes in Pseudomonas fluorescens SBW25. Mol. Biol. Evol. 36, 1071–1085 (2019).

  • 43.

    Remigi, P. et al. Ribosome provisioning activates a bistable switch coupled to fast exit from stationary phase. Mol. Biol. Evol. 36, 1056–1070 (2019).

  • 44.

    Calcott, B. & Sterelny, K. (eds) The Major Transitions in Evolution Revisited (Vienna Series in Theoretical Biology, MIT Press, 2011).

  • 45.

    Godfrey-Smith, P. & Kerr, B. Gestalt-switching and the evolutionary transitions. Br. J. Philos. Sci. 64, 205–222 (2013).

    • Article
    • Google Scholar
  • 46.

    Clarke, E. Origins of evolutionary transitions. J. Biosci. 39, 1–14 (2014).

    • Article
    • Google Scholar
  • 47.

    Shelton, D. E. & Michod, R. E. Group selection and group adaptation during a major evolutionary transition: insights from the evolution of multicellularity in the volvocine algae. Biol. Theory 9, 452–469 (2014).

    • Article
    • Google Scholar
  • 48.

    Clarke, E. A levels-of-selection approach to evolutionary individuality. Biol. Philos. 31, 893–911 (2016).

    • Article
    • Google Scholar
  • 49.

    Bourrat, P. Evolutionary transitions in individuality: a formal analysis. Synthese https://doi.org/10.1007/s11229-019-02307-5 (2019).

  • 50.

    Queller, D. C. & Strassmann, J. E. Beyond society: the evolution of organismality. Phil. Trans. R. Soc. Lond. B 364, 3143–3155 (2009).

    • Article
    • Google Scholar
  • 51.

    Bourke, A. F. Principles of Social Evolution (Oxford Univ. Press, 2011).

  • 52.

    West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Major evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

  • 53.

    Boraas, M. E., Seale, D. B. & Boxhorn, J. E. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol. Ecol. 12, 153–164 (1998).

    • Article
    • Google Scholar
  • 54.

    van Gestel, J. & Tarnita, C. E. On the origin of biological construction, with a focus on multicellularity. Proc. Natl Acad. Sci. USA 114, 11018–11026 (2017).

  • 55.

    Herron, M. D. et al. De novo origins of multicellularity in response to predation. Sci. Rep. 9, 2328 (2019).

  • 56.

    Rainey, P. B. Unity from conflict. Nature 446, 616 (2007).

  • 57.

    Bourrat, P. Evolutionary transitions in heritability and individuality. Theory Biosci. 138, 305–323 (2019).

    • Article
    • Google Scholar
  • 58.

    Maliet, O., Shelton, D. E. & Michod, R. E. A model for the origin of group reproduction during the evolutionary transition to multicellularity. Biol. Lett. 11, 20150157 (2015).

  • 59.

    Griesemer, J. in Towards a Theory of Development (eds Minelli, A. & Pradeu, T.) 183–202 (Oxford Univ. Press, 2014).

  • 60.

    Doebeli, M., Ispolatov, Y. & Simon, B. Towards a mechanistic foundation of evolutionary theory. eLife 6, e23804 (2017).

  • 61.

    Muller, G. B. & Wagner, G. P. Novelty in evolution—restructuring the concept. Annu. Rev. Ecol. Syst. 22, 229–256 (1991).

    • Article
    • Google Scholar
  • 62.

    Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).

  • 63.

    Pfeiffer, T. & Bonhoeffer, S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc. Natl Acad. Sci. USA 100, 1095–1098 (2003).

  • 64.

    Ewald, P. W. Evolution of Infectious Disease (Oxford Univ. Press, 1994).

  • 65.

    Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2, 76–81 (1994).

  • 66.

    Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).

  • 67.

    Frank, S. A. Natural selection. III. Selection versus transmission and the levels of selection. J. Evol. Biol. 25, 227–243 (2012).

  • 68.

    Lythgoe, K. A., Pellis, L. & Fraser, C. Is HIV short-sighted? insights from a multistrain nested model. Evolution 67, 2769–2782 (2013).

  • 69.

    Cressler, C. E., McLeod, D. V., Rozins, C., van den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).

    • Article
    • Google Scholar
  • 70.

    Frank, S. A. Demography and the tragedy of the commons. J. Evol. Biol. 23, 32–39 (2010).

  • 71.

    Anderson, R. M. & May, R. M. Infectious Diseases of Humans (Oxford Univ. Press, 1991).

  • 72.

    Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton Univ. Press, 2007).

  • 73.

    Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).

  • 74.

    Staps, M., van Gestel, J. & Tarnita, C. E. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat. Ecol. Evol. 3, 1197 (2019).

    • Article
    • Google Scholar
  • 75.

    Wilson, D. S. & Sober, E. Reviving the superorganism. J. Theor. Biol. 136, 337–356 (1989).

  • 76.

    Hamilton, W. D. The genetical evolution of social behavior, I & II. J. Theor. Biol. 7, 1–52 (1964).

  • 77.

    Wilson, E. O. & Holldobler, B. Eusociality: origin and consequences. Proc. Natl Acad. Sci. USA 102, 13367–13371 (2005).

  • 78.

    Gardner, A. & Grafen, A. Capturing the superorganism: a formal theory of group adaptation. J. Evol. Biol. 22, 659–671 (2009).

  • 79.

    Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. Lond. B 362, 1887–1925 (2007).

  • 80.

    Lane, N. The Vital Question: Why is Life the Way it is? (Profile Books, 2015).

  • 81.

    Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

  • 82.

    Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).

  • 83.

    Xie, L., Yuan, A. E. & Shou, W. Y. Simulations reveal challenges to artificial community selection and possible strategies for success. PLoS Biol. 17, e3000295 (2019).

  • 84.

    Cottinet, D. et al. Lineage tracking for probing heritable phenotypes at single-cell resolution. PLoS ONE 11, e0152395 (2016).

  • 85.

    Doulcier, G., Lambert, A. J., De Monte, S. & Rainey, P. B. Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. Preprint at bioRxiv https://doi.org/10.1101/827592 (2019).

  • 86.

    Renshaw, E. Modelling Biological Populations in Space and Time (Cambridge Univ. Press, 1993).

  • 87.

    Brauer, F. & Castillo-Chávez, C. Mathematical Models in Population Biology and Epidemiology (Springer, 2001).

  • 88.

    Davis, M. H. A. Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B 46, 353–388 (1984).

    • Google Scholar

  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health