in

Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery

  • 1.

    Sousa, W. P. The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984).

    • Article
    • Google Scholar
  • 2.

    Vercelloni, J., Kayal, M., Chancerelle, Y. & Planes, S. Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Sci. Rep. 9 (2019).

  • 3.

    Gouezo, M. et al. Drivers of recovery and reassembly of coral reef communities. Proc. R. Soc. B Biol. Sci. 286, 10 (2019).

    • Article
    • Google Scholar
  • 4.

    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).

  • 5.

    Gaines, S. & Roughgarden, J. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. Natl. Acad. Sci. 82, 3707–3711 (1985).

  • 6.

    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).

    • Article
    • Google Scholar
  • 7.

    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1119–1144 (1977).

  • 8.

    Haddon, M. Modelling and quantitative methods in fisheries. (CRC press, 2010).

  • 9.

    Duarte, C. M. et al. Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries Coasts 38, 1202–1212 (2015).

    • Article
    • Google Scholar
  • 10.

    Underwood, A. J. Experimental ecology of rocky intertidal habitats: what are we learning? J. Exp. Mar. Biol. Ecol. 250, 51–76 (2000).

  • 11.

    Bruno, J., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    • Article
    • Google Scholar
  • 12.

    Doropoulos, C., Roff, G., Visser, M.-S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 92, 304–314 (2017).

    • Article
    • Google Scholar
  • 13.

    Roughgarden, J., Gaines, S. & Possingham, H. Recruitment dynamics in complex life cycles. Science 241, 1460–1466 (1988).

  • 14.

    Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).

  • 15.

    Navarrete, S. A., Wieters, E. A., Broitman, B. R. & Castilla, J. C. Scales of benthic–pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proc. Natl. Acad. Sci. 102, 18046–18051 (2005).

  • 16.

    Halpern, B. S. et al. A Global Map of Human Impact on Marine Ecosystems. Science 319, 948–952 (2008).

  • 17.

    Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals. Ecosyst. World 25, 133–207 (1990).

    • Google Scholar
  • 18.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 19.

    Fabricius, K. E., Okaji, K. & De’ath, G. Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29, 593–605 (2010).

  • 20.

    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).

  • 21.

    Chong-Seng, K. M., Graham, N. A. J. & Pratchett, M. S. Bottlenecks to coral recovery in the Seychelles. Coral Reefs 33, 449–461 (2014).

  • 22.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

  • 23.

    Bramanti, L. & Edmunds, P. J. Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs 35, 543–553 (2016).

  • 24.

    Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).

    • Google Scholar
  • 25.

    dela Cruz, D. W. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985 (2017).

  • 26.

    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

  • 27.

    Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8(1), 9680 (2018).

  • 28.

    Holbrook, S. J. et al. Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Sci. Rep. 8, 7338 (2018).

  • 29.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).

  • 30.

    Jones, G. P. et al. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28, 307–325 (2009).

  • 31.

    Watson, J. R., Kendall, B. E., Siegel, D. A. & Mitarai, S. Changing Seascapes, Stochastic Connectivity, and Marine Metapopulation Dynamics. Am. Nat. 180, 99–112 (2012).

  • 32.

    Morse, D. E., Hooker, N., Morse, A. N. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).

    • Article
    • Google Scholar
  • 33.

    Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).

    • Article
    • Google Scholar
  • 34.

    Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science 345, 892–897 (2014).

  • 35.

    Diaz-Pulido, G. & McCook, L. J. Relative roles of herbivory and nutrients in the recruitment of coral-reef seaweeds. Ecology 84, 2026–2033 (2003).

    • Article
    • Google Scholar
  • 36.

    Edmunds, P. J., Nozawa, Y. & Villanueva, R. D. Refuges modulate coral recruitment in the Caribbean and the Pacific. J. Exp. Mar. Biol. Ecol. 454, 78–84 (2014).

    • Article
    • Google Scholar
  • 37.

    Roff, G. et al. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34, 715–725 (2015).

  • 38.

    Gouezo, M. et al. Impact of two sequential super typhoons on coral reef communities in Palau. Mar. Ecol. Prog. Ser. 540, 73–85 (2015).

  • 39.

    Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).

  • 40.

    Penin, L. & Adjeroud, M. Relative importance of recruitment and post-settlement processes in the maintenance of coral assemblages in an insular, fragmented reef system. Mar. Ecol. Prog. Ser. 473, 149–162 (2013).

  • 41.

    Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615 (2018).

  • 42.

    Penland, L., Kloulechad, J., Idip, D. & Van Woesik, R. Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23, 133–140 (2004).

    • Article
    • Google Scholar
  • 43.

    Feng, M., Colberg, F., Slawinski, D., Berry, O. & Babcock, R. Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia. J. Mar. Syst. 164, 1–12 (2016).

    • Article
    • Google Scholar
  • 44.

    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity? Prog. Oceanogr. 165, 110–122 (2018).

  • 45.

    Schlaefer, J. A., Wolanski, E., Lambrechts, J. & Kingsford, M. J. Wind Conditions on the Great Barrier Reef Influenced the Recruitment of Snapper (Lutjanus carponotatus). Front. Mar. Sci. 5, 193 (2018).

    • Article
    • Google Scholar
  • 46.

    Golbuu, Y. et al. Predicting coral recruitment in Palau’s complex reef archipelago. PLoS ONE 7, e50998 (2012).

  • 47.

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).

  • 48.

    Doropoulos, C., Ward, S., Roff, G., González-Rivero, M. & Mumby, P. J. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats. PLoS One 10, e0128535 (2015).

  • 49.

    Gallagher, C. & Doropoulos, C. Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs, https://doi.org/10.1007/s00338-016-1518-9 (2016).

  • 50.

    Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).

  • 51.

    Fox, H. E. et al. Rebuilding coral reefs: success (and failure) 16 years after low‐cost, low‐tech restoration. Restor. Ecol. rec. 12935, https://doi.org/10.1111/rec.12935 (2019).

  • 52.

    Edmunds, P. J. et al. Geographic variation in long-term trajectories of change in coral recruitment: a global-to-local perspective. Mar. Freshw. Res. 66, 609 (2015).

    • Article
    • Google Scholar
  • 53.

    Kayal, M., Vercelloni, J., Wand, M. P. & Adjeroud, M. Searching for the best bet in life-strategy: A quantitative approach to individual performance and population dynamics in reef-building corals. Ecol. Complex. 23, 73–84 (2015).

    • Article
    • Google Scholar
  • 54.

    Babcock, R. C. Fine-scale spatial and temporal patterns in coral settlement. In Proc 6th Int Coral Reef Symp 2, 635–639 (1988).

    • Google Scholar
  • 55.

    Miller, K. & Mundy, C. Rapid settlement in broadcast spawning corals: implications for larval dispersal. Coral Reefs 22, 99–106 (2003).

    • Article
    • Google Scholar
  • 56.

    Mullen, A. D. et al. Underwater microscopy for in situ studies of benthic ecosystems. Nat. Commun. 7, 12093 (2016).

  • 57.

    Zweifler, A., Akkaynak, D., Mass, T. & Treibitz, T. In situ Analysis of Coral Recruits Using Fluorescence Imaging. Front. Mar. Sci. 4, 273 (2017).

    • Article
    • Google Scholar
  • 58.

    Edmunds, P., Leichter, J. & Adjeroud, M. Landscape-scale variation in coral recruitment in Moorea, French Polynesia. Mar. Ecol. Prog. Ser. 414, 75–89 (2010).

  • 59.

    Leigh, E. G., Paine, R. T., Quinn, J. F. & Suchanek, T. H. Wave energy and intertidal productivity. Proc. Natl. Acad. Sci. 84, 1314–1318 (1987).

  • 60.

    Madin, J. S. Mechanical limitations of reef corals during hydrodynamic disturbances. Coral Reefs 24, 630–635 (2005).

  • 61.

    Vermeij, M. J. A., Smith, J. E., Smith, C. M., Thurber, R. V. & Sandin, S. A. Survival and settlement success of coral planulae: independent and synergistic effects of macroalgae and microbes. Oecologia 159, 325–336 (2009).

  • 62.

    Steneck, R. The Ecology of Coralline Algal Crusts: Convergent Patterns and Adaptative Strategies. Annu. Rev. Ecol. Syst. 1, 273–303 (1986).

    • Article
    • Google Scholar
  • 63.

    Mumby, P. J. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs 28, 683–690 (2009).

  • 64.

    Venera-Ponton, D. E., Diaz-Pulido, G., McCook, L. J. & Rangel-Campo, A. Macroalgae reduce growth of juvenile corals but protect them from parrotfish damage. Mar. Ecol. Prog. Ser. 421, 109–115 (2011).

  • 65.

    Steneck, R., Arnold, S. & Mumby, P. Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).

  • 66.

    Bejarano, S. et al. The shape of success in a turbulent world: Wave exposure filtering of coral reef herbivory. Funct. Ecol. 31, 1312–1324 (2017).

    • Article
    • Google Scholar
  • 67.

    Vergés, A., Vanderklift, M. A., Doropoulos, C. & Hyndes, G. A. Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PloS One 6, e17115 (2011).

  • 68.

    Tanner, J. E. Multi-decadal analysis reveals contrasting patterns of resilience and decline in coral assemblages. Coral Reefs 36, 1225–1233 (2017).

  • 69.

    Doropoulos, C. et al. Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs 33, 613–623 (2014).

  • 70.

    Mundy, C. N. An appraisal of methods used in coral recruitment studies. Coral Reefs 19, 124–131 (2000).

    • Article
    • Google Scholar
  • 71.

    Baird, A. H. & Babcock, R. C. Morphological differences among three species of newly settled pocilloporid coral recruits. Coral Reefs 19, 179–183 (2000).

    • Article
    • Google Scholar
  • 72.

    Babcock, R. C., Baird, A. H., Piromvaragorn, S., Thomson, D. P. & Willis, B. L. Identification of scleractinian coral recruits from Indo-Pacific reefs. Zool. Stud. 42, 211–226 (2003).

    • Google Scholar
  • 73.

    Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).

  • 74.

    Golbuu, Y. et al. Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26, 319–332 (2007).

    • Article
    • Google Scholar
  • 75.

    Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).

    • Article
    • Google Scholar
  • 76.

    Houk, P., Benavente, D., Iguel, J., Johnson, S. & Okano, R. Coral Reef Disturbance and Recovery Dynamics Differ across Gradients of Localized Stressors in the Mariana Islands. PLoS ONE 9, e105731 (2014).

  • 77.

    Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-inflated Models with R. (Highland Statistics Limited 2016).

  • 78.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    • Google Scholar
  • 79.

    Underwood, A. J. Experiments in ecology: their logical design and interpretation using analysis of variance. (Cambridge University Press, 1996).

  • 80.

    De’ath, G. Boosted trees for ecological modelling and prediction. Ecology 88, 243–251 (2007).

  • 81.

    Trapon, M., Pratchett, M., Adjeroud, M., Hoey, A. & Baird, A. Post-settlement growth and mortality rates of juvenile scleractinian corals in Moorea, French Polynesia versus Trunk Reef, Australia. Mar. Ecol. Prog. Ser. 488, 157–170 (2013).

  • 82.

    Mundy, C. & Babcock, R. Are vertical distribution patterns of scleractinian corals maintained by pre-or post-settlement processes? A case study of three contrasting species. Mar. Ecol. Prog. Ser. 198, 109–119 (2000).

  • 83.

    Baird, A. H., Babcock, R. C. & Mundy, C. P. Habitat selection by larvae influences the depth distribution of six common coral species. Mar. Ecol. Prog. Ser. 252, 289–293 (2003).

  • 84.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    • Article
    • Google Scholar
  • 85.

    R Development Core Team. R: A language and environment for statistical computing. (2019).

  • 86.

    Bates, D., Maechler, M., Bolker, B., Walker, S. & others. lme4: Linear mixed-effects models using Eigen and S4. (2014).

  • 87.

    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. (2018).

  • 88.

    Clarke, K. R. & Gorley, R. N. Primer. (2006).

  • 89.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: guide to software and statistical methods. (2008).


  • Source: Ecology - nature.com

    Brainstorming energy-saving hacks on Satori, MIT’s new supercomputer

    Maintaining the equipment that powers our world