in

5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange

  • 1.

    Jones, M. et al. Food globalization in prehistory. World Archaeol. 43, 665–675 (2011).

    • Article
    • Google Scholar
  • 2.

    Motuzaite-Matuzeviciute, G., Staff, R. A., Hunt, H. V., Liu, X. & Jones, M. K. The early chronology of broomcorn millet (Panicum miliaceum) in Europe. Antiquity 87, 1073–1085 (2013).

    • Article
    • Google Scholar
  • 3.

    Spengler, R. N. III Fruit from the Sands: The Silk Road Origins of the Foods We Eat (Univ. of California Press, 2019).

  • 4.

    Zhao, Z. Eastward spread of wheat into China—new data and new issues. Chin. Archaeol. 9, 1–9 (2009).

    • Article
    • Google Scholar
  • 5.

    Li, X., Dodson, J., Zhou, X., Zhang, H. & Masutomoto, R. Early cultivated wheat and broadening of agriculture in Neolithic China. Holocene 17, 555–560 (2007).

    • Article
    • Google Scholar
  • 6.

    Sherratt, A. in Contact and Exchange in the Ancient World (ed. Mair, V.) 30–61 (Hawaii Univ. Press, 2006).

  • 7.

    Long, T. et al. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat. Plants 4, 272–279 (2018).

  • 8.

    Atahan, P. et al. Temporal trends in millet consumption in northern China. J. Archaeol. Sci. 50, 171–177 (2014).

    • Article
    • Google Scholar
  • 9.

    Dodson, J. R. et al. Origin and spread of wheat in China. Quat. Sci. Rev. 72, 108–111 (2013).

    • Article
    • Google Scholar
  • 10.

    Dong, G. et al. Prehistoric trans-continental cultural exchange in the Hexi Corridor, northwest China. Holocene 28, 621–628 (2017).

    • Article
    • Google Scholar
  • 11.

    Liu, X. & Jones, M. K. Food globalisation in prehistory: top down or bottom up? Antiquity 88, 956–963 (2014).

    • Article
    • Google Scholar
  • 12.

    Zhou, X., Li, X., Dodson, J. & Zhao, K. Rapid agricultural transformation in the prehistoric Hexi Corridor, China. Quat. Int. 426, 33–41 (2016).

    • Article
    • Google Scholar
  • 13.

    Miller, N. F., Spengler, R. N. III & Frachetti, M. Millet cultivation across Eurasia: origins, spread, and the influence of seasonal climate. Holocene 26, 1566–1575 (2016).

    • Article
    • Google Scholar
  • 14.

    Betts, A., Jia, P. W. & Dodson, J. The origins of wheat in China and potential pathways for its introduction: a review. Quat. Int. 348, 158–168 (2014).

    • Article
    • Google Scholar
  • 15.

    Christian, D. Silk Roads or steppe roads? The Silk Roads in world history. J. World Hist. 11, 1–26 (2000).

    • Article
    • Google Scholar
  • 16.

    Kuzmina, E. E. The Prehistory of the Silk Road: Encounters with Asia (Univ. Pennsylvania Press, 2008).

  • 17.

    Frachetti, M. Multi-regional emergence of mobile pastoralism and non-uniform institutional complexity across eurasia. Curr. Anthropol. 53, 2–38 (2012).

    • Article
    • Google Scholar
  • 18.

    Spengler, R. N. & Willcox, G. Archaeobotanical results from Sarazm, Tajikistan, an early Bronze age settlement on the edge: agriculture and exchange. Environ. Archaeol. 18, 211–221 (2013).

    • Article
    • Google Scholar
  • 19.

    Masson, V. M. The first farmers in Turkmenia. Antiquity 35, 203–213 (1961).

    • Article
    • Google Scholar
  • 20.

    Harris, D., Gosden, C. & Charles, M. Jeitun: recent excavations at an early Neolithic site in southern Turkmenistan. Proc. Prehist. Soc. 63, 423–442 (1996).

    • Article
    • Google Scholar
  • 21.

    Spengler, R. N. Agriculture in the central Asian Bronze Age. J. World Prehist. 28, 215–253 (2015).

    • Article
    • Google Scholar
  • 22.

    Spengler, R. et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia. Proc. R. Soc. Lond. B 281, 20133382 (2014).

    • Article
    • Google Scholar
  • 23.

    Liu, X. et al. The virtues of small grain size: potential pathways to a distinguishing feature of Asian wheats. Quat. Int. 426, 107–119 (2016).

    • Article
    • Google Scholar
  • 24.

    Matuzeviciute, G. M., Abdykanova, A., Kume, S., Nishiaki, Y. & Tabaldiev, K. The effect of geographical margins on cereal grain size variation: case study for highlands of Kyrgyzstan. J. Archaeol. Sci. Rep. 20, 400–410 (2018).

    • Google Scholar
  • 25.

    de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, 7711 (2018).

  • 26.

    de Barros Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

  • 27.

    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

  • 28.

    Kohl, P. L. The Making of Bronze Age Eurasia: Cambridge World Archaeology (Cambridge Univ. Press, 2007).

  • 29.

    Anthony, D. W. The Horse, the Wheel, and Language: How Bronze Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007).

  • 30.

    Rühl, L., Herbig, C. & Stobbe, A. Archaeobotanical analysis of plant use at Kamennyi Ambar: a Bronze Age fortified settlement of the Sintashta culture in the southern Trans-Urals steppe. Russ. Veg. Hist. Archaeobot. 24, 413–426 (2015).

    • Article
    • Google Scholar
  • 31.

    Ryabogina, N. E. & Ivanov, S. N. Ancient agriculture in Western Siberia: problems of argumentation, paleoethnobotanic methods, and analysis of data. Archaeol. Ethnol. Anthropol. Eurasia 39, 96–106 (2011).

    • Article
    • Google Scholar
  • 32.

    Frachetti, M. D., Spengler, R. N., Fritz, G. J. & Maryashev, A. N. Earliest direct evidence for broomcorn millet and wheat in the central Eurasian steppe region. Antiquity 84, 993–1010 (2010).

    • Article
    • Google Scholar
  • 33.

    Zhang, J. et al. Cultivation strategies at the ancient Luanzagangzi settlement on the easternmost Eurasian steppe during the late Bronze Age. Veg. Hist. Archaeobot. 26, 505–512 (2017).

    • Article
    • Google Scholar
  • 34.

    Zhao, K., Li, X., Zhou, X., Dodson, J. & Ji, M. Impact of agriculture on an oasis landscape during the late Holocene: palynological evidence from the Xintala site in Xinjiang, NW China. Quat. Int. 311, 81–86 (2013).

    • Article
    • Google Scholar
  • 35.

    Li, C. et al. Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J. Archaeol. Sci. 38, 115–119 (2011).

  • 36.

    Possehl, G. L. The Middle Asian interaction sphere: trade and contact in the third millennium BC. Expedition 49, 40–42 (2004).

    • Google Scholar
  • 37.

    Boivin, N., Fuller, D. Q. & Crowther, A. Old World globalization and the Columbian exchange: comparison and contrast. World Archaeol. 44, 452–469 (2012).

    • Article
    • Google Scholar
  • 38.

    Laufer, B. Sino-Iranica; Chinese Contributions to the History of Civilization in Ancient Iran, with special reference to the history of cultivated plants and products (Field Museum of Natural History, 1919).

  • 39.

    Stevens, C. J. et al. Between China and South Asia: a Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. Holocene 26, 1541–1555 (2016).

  • 40.

    Hunt, H. V. et al. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol. Ecol. 20, 4756–4771 (2011).

  • 41.

    Motuzaite-Matuzeviciute, G., Telizhenko, S. & Jones, M. K. Archaeobotanical investigation of two Scythian-Sarmatian period pits in Eastern Ukraine: implications for floodplain cereal cultivation. J. Field Archaeol. 37, 51–61 (2012).

    • Article
    • Google Scholar
  • 42.

    Cai, D. et al. Ancient DNA analysis of cattle remains from the Houyangwan location at the Shimao site, Shaanxi province. Archaeol. Cult. Relics 4, 122–127 (2016).

    • Google Scholar
  • 43.

    Hu, S. et al. Research on animal remains unearthed from Shimao site of Shenmu in Shaanxi province in 2012–2013. Archaeol. Cult. Relics 4, 109–121 (2016).

    • Google Scholar
  • 44.

    Petersen, G., Seberg, O., Yde, M. & Berthelsen, K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol. Phylogenet. Evol. 39, 70–82 (2006).

  • 45.

    Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science 347, 248–250 (2015).

  • 46.

    Mark, A. Peopling the Tibetan plateau: insights from archaeology. High Alt. Med. Biol. 12, 141–147 (2011).

    • Article
    • Google Scholar
  • 47.

    Renssen, H., Seppä, H., Crosta, X., Goosse, H. & Roche, D. Global characterization of the Holocene thermal maximum. Quat. Sci. Rev. 48, 7–19 (2012).

    • Article
    • Google Scholar
  • 48.

    Shakun, J. D. & Carlson, A. E. A global perspective on last glacial maximum to Holocene climate change. Quat. Sci. Rev. 29, 1801–1816 (2010).

    • Article
    • Google Scholar
  • 49.

    Jia, P., Betts, A. & Wu, X. Prehistoric archaeology in the Zhunge’er (Junggar) Basin, Xinjiang, China. Eurasian Prehist. 6, 167–198 (2009).

    • Google Scholar
  • 50.

    Berger, A. L. Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    • Article
    • Google Scholar
  • 51.

    Wanner, H. et al. Mid-to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    • Article
    • Google Scholar
  • 52.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

  • 53.

    DeMenocal, P. B. Cultural responses to climate change during the late Holocene. Science 292, 667–673 (2001).

  • 54.

    Weiss, H. et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993).

  • 55.

    Xu, H., Zhou, K. E., Lan, J., Zhang, G. & Zhou, X. Arid Central Asia saw mid-Holocene drought. Geology 47, 255–258 (2019).

    • Article
    • Google Scholar
  • 56.

    Feng, Z. et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. Holocene 27, 1–11 (2016).

    • Google Scholar
  • 57.

    Chen, F. et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess–paleosol sequences in Xinjiang, China. Quat. Sci. Rev. 146, 134–146 (2016).

    • Article
    • Google Scholar
  • 58.

    Tao, S. C. et al. Pollen-inferred vegetation and environmental changes since 16.7 ka BP at Balikun Lake, Xinjiang. Sci. Bull. 55, 2449–2457 (2010).

    • Article
    • Google Scholar
  • 59.

    Ran, M., Zhang, C. & Feng, Z. Climatic and hydrological variations during the past 8000 years in northern Xinjiang of China and the associated mechanisms. Quat. Int. 358, 21–34 (2015).

    • Article
    • Google Scholar
  • 60.

    Jiang, Q. F. et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from Sayram Lake in northern Xinjiang. Sci. China Earth Sci. 56, 339–353 (2013).

    • Article
    • Google Scholar
  • 61.

    Wang, W. & Feng, Z. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth Sci. Rev. 122, 38–57 (2013).

    • Article
    • Google Scholar
  • 62.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).


  • Source: Ecology - nature.com

    Half of U.S. deaths related to air pollution are linked to out-of-state emissions

    Evolutionary conservation of within-family biodiversity patterns