in

Evolutionary conservation of within-family biodiversity patterns

  • 1.

    Darwin, C. R. On the Origin of Species by Means of Natural Selection (John Murray, London, 1859).

  • 2.

    Stearns, S. C. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41, 173–187 (1983).

    • Article
    • Google Scholar
  • 3.

    Garland, T. Jr., Huey, R. B. & Bennett, A. F. Phylogeny and coadaptation of thermal physiology in lizards: a reanalysis. Evolution 45, 1969–1975 (1991).

  • 4.

    Gómez, J. M., Verdú, M. & Perfectti, F. Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465, 918 (2010).

  • 5.

    Jablonski, D. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238, 360–363 (1987).

  • 6.

    Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

  • 7.

    Savolainen, V., Heard, S. B., Powell, M. P., Davies, T. J. & Mooers, A. Ø. Is cladogenesis heritable? Syst. Biol. 51, 835–843 (2002).

  • 8.

    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).

  • 9.

    Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

  • 10.

    Graham, C. H., Storch, D. & Machac, A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).

    • Article
    • Google Scholar
  • 11.

    Hawkins, B. A. Multiregional comparison of the ecological and phylogenetic structure of butterfly species richness gradients. J. Biogeogr. 37, 647–656 (2010).

    • Article
    • Google Scholar
  • 12.

    Hawkins, B. A. et al. Different evolutionary histories underlie congruent species richness gradients of birds and mammals. J. Biogeogr. 39, 825–841 (2012).

    • Article
    • Google Scholar
  • 13.

    Hawkins, B. A., Rodríguez, M. Á. & Weller, S. G. Global angiosperm family richness revisited: linking ecology and evolution to climate. J. Biogeogr. 38, 1253–1266 (2011).

    • Article
    • Google Scholar
  • 14.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

  • 15.

    Laiolo, P., Pato, J. & Obeso, J. R. Ecological and evolutionary drivers of the elevational gradient of diversity. Ecol. Lett. 21, 1022–1032 (2018).

  • 16.

    Bryant, J. A. et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl Acad. Sci. USA 105, 11505–11511 (2008).

  • 17.

    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

  • 18.

    Ricklefs, R. E. & Renner, S. S. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335, 464–467 (2012).

  • 19.

    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta‐study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).

    • Article
    • Google Scholar
  • 20.

    Hardy, O. J., Couteron, P., Munoz, F., Ramesh, B. R. & Pélissier, R. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Glob. Ecol. Biogeogr. 21, 1007–1016.25 (2012).

    • Article
    • Google Scholar
  • 21.

    Laiolo, P., Seoane, J., Obeso, J. R. & Illera, J. C. Ecological divergence among young lineages favours sympatry, but convergence among old ones allows coexistence in syntopy. Glob. Ecol. Biogeogr. 26, 601–608 (2017).

    • Article
    • Google Scholar
  • 22.

    Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evolution 5, 4757–4765 (2015).

    • Article
    • Google Scholar
  • 23.

    Kozak, K. & Wiens, J. Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am. Nat. 176, 40–54 (2010).

  • 24.

    Colwell, R. K. & Rangel, T. F. A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3695–3707 (2010).

  • 25.

    Magurran, A. E. Measuring Biological Diversity (Blackwell Science Ldt, Oxford, 2013).

  • 26.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

  • 27.

    Laiolo, P. & Obeso, J. R. in High Mountain Conservation in A Changing World. 253–283 (Springer Cham, 2017).

  • 28.

    Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167 (2004).

  • 29.

    Sperry, K. P. et al. Species diversity and dispersal traits alter biodiversity spillover in reconstructed grasslands. J. Appl. Ecol. 56, 2216–2224 (2019).

    • Article
    • Google Scholar
  • 30.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

  • 31.

    Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).

  • 32.

    Lawton, J. H. Are there general laws in ecology? Oikos 84, 177–192 (1999).

    • Article
    • Google Scholar
  • 33.

    Hubbell, S. P. The Unified Neutral Theory of Biogeography and Biodiversity (Princeton University Press, Princeton, 2001).

  • 34.

    Jablonski, D. Scale and hierarchy in macroevolution. Palaeontology 50, 87–109 (2007).

    • Article
    • Google Scholar
  • 35.

    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

  • 36.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

  • 37.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222 (2014). (7499).

  • 38.

    Merckx, V. S. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347 (2015). (7565).

  • 39.

    McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS https://doi.org/10.1002/9780470015902.a0022548 (2010).

  • 40.

    Buckley, L. B. et al. Phylogeny, niche conservatism, and the latitudinal diversity gradient in mammals. Proc. R. Soc. Lond. B Biol. Sci. 277, 2131–2138 (2010).

    • Article
    • Google Scholar
  • 41.

    Kuhlman, K. R. et al. Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl. Environ. Microbiol. 72, 1708–1715 (2006).

  • 42.

    Winkler, I. S. & Mitter, C. in Specialization, Speciation, and Radiation. 240–263 (University of California Press, Oakland, 2008).

  • 43.

    Brum, F. T., Kindel, A., Hartz, S. M. & Duarte, L. D. Spatial and phylogenetic structure drive frugivory in Tyrannidae birds across the range of Brazilian Araucaria forests. Oikos 121, 899–906 (2012).

    • Article
    • Google Scholar
  • 44.

    Rolshausen, G., Dal Grande, F., Sadowska-Deś, A. D., Otte, J. & Schmitt, I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualist mediated niche expansions. Ecography 41, 1380–1392 (2018).

    • Article
    • Google Scholar
  • 45.

    Chagnon, P. L., Magain, N., Miadlikowska, J. & Lutzoni, F. Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus Peltigera. J. Ecol. 107, 1645–1661 (2019).

    • Article
    • Google Scholar
  • 46.

    Werth, S. & Sork, V. L. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range covering ecoregions of western North America. Am. J. Bot. 101, 1127–1140 (2014).

  • 47.

    Sadowsky, A. & Ott, S. Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58, 81–90 (2012).

  • 48.

    Dehling, D. M. et al. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055 (2014).

    • Google Scholar
  • 49.

    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).

  • 50.

    Barnard, P. C. The Royal Entomological Society Book of British Insects (John Wiley Sons, Hoboken, 2011).

  • 51.

    Miadlikowska, J. et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenetics Evol. 79, 132–168 (2014).

    • Article
    • Google Scholar
  • 52.

    Gill, F. & Donsker, D. IOC World Bird List (v8.2). https://doi.org/10.14344/IOC.ML.8.2 (2018).

  • 53.

    Laiolo, P., Illera, J. C., Meléndez, L., Segura, A. & Obeso, J. R. Abiotic, biotic, and evolutionary control of the distribution of C and N isotopes in food webs. Am. Nat. 185, 169–182 (2015).

  • 54.

    Laiolo, P. et al. The evolutionary convergence of avian lifestyles and their constrained co-evolution with species’ ecological niche. Proc. R. Soc. Lond. B Biol. Sci. 282, 20151808 (2015).

  • 55.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

  • 56.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).

  • 57.

    Malm, T., Johanson, K. A. & Wahlberg, N. The evolutionary history of Trichoptera (Insecta): A case of successful adaptation to life in freshwater. Syst. Entomol. 38, 459–473 (2013).

    • Article
    • Google Scholar
  • 58.

    Prieto, M. & Wedin, M. Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8, e65576 (2013). (6).

  • 59.

    Nash, T. H. Lichen Biology (Cambridge University Press, 1996).

  • 60.

    Ellis, C. J. Lichen epiphyte diversity: a species, community and trait-based review. Perspect. Plant. Ecol. 14, 131–152 (2012).

    • Article
    • Google Scholar
  • 61.

    Stone, L. & Roberts, A. The checkerboard score and species distributions. Oecologia 85, 74–79 (1990).

  • 62.

    Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall/CRC, London, 2017).

  • 63.

    Muggeo, V. M. Modeling temperature effects on mortality: multiple segmented relationships with common break points. Biostatistics 9, 613–620 (2008).

  • 64.

    Cardoso, P., Rigal, F. & Carvalho, J. C. BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).

    • Article
    • Google Scholar
  • 65.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    • Article
    • Google Scholar
  • 66.

    Steinbauer, M. J., Dolos, K., Reineking, B. & Beierkuhnlein, C. Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Glob. Ecol. Biogeogr. 21, 1203–1212 (2012).

    • Article
    • Google Scholar
  • 67.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

  • 68.

    Boettiger, C., Coop, G. & Ralph, P. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66, 2240–2251 (2012).

  • 69.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    • Article
    • Google Scholar
  • 70.

    Orme, D. et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. (R package version 0.5.2., 2013)

  • 71.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R. Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (R package version 3.1–137, 2018).

  • 72.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

  • 73.

    Burnham, K. P. & Anderson, D. R. in Model Selection and Inference, 75–117 (Springer, New York, 1998).

  • 74.

    Laiolo, P., Pato, J. Jimenez-Alfaro, B. & Obeso, J. R. Evolutionary Conservation of Within-family Biodiversity [Dataset]. (Digital CSIC Repository, 2020). https://doi.org/10.20350/digitalCSIC/10529


  • Source: Ecology - nature.com

    Early high rates and disparity in the evolution of ichthyosaurs

    Oxygen lost and found