in

Earlier leaf-out warms air in the north

  • 1.

    Xu, X., Riley, W. J., Koven, C. D. & Jia, G. Heterogeneous spring phenology shifts affected by climate: supportive evidence from two remotely sensed vegetation indices. Environ. Res. Commun. 1, 91004 (2019).

    • Article
    • Google Scholar
  • 2.

    Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

  • 3.

    Xu, X., Riley, W. J., Koven, C. D. & Jia, G. Observed and simulated sensitivities of spring greenup to preseason climate in northern temperate and boreal regions. J. Geophys. Res. Biogeosci. 123, 60–78 (2018).

    • Article
    • Google Scholar
  • 4.

    Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    • Article
    • Google Scholar
  • 5.

    Peñuelas, J. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    • Article
    • Google Scholar
  • 6.

    Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 44006 (2008).

    • Article
    • Google Scholar
  • 7.

    Moore, K. E. et al. Seasonal Variation in Radiative and Turbulent Exchange at a Deciduous Forest in Central Massachusetts. J. Appl. Meterology 35, 122–134 (1996).

    • Article
    • Google Scholar
  • 8.

    Blanken, P. D. & Rouse, W. R. The role of willow-birch forest in the surface energy balance at Arctic treeline. Arct. Alp. Res. 26, 403–411 (1994).

    • Article
    • Google Scholar
  • 9.

    Ryu, Y., Baldocchi, D. D., Ma, S. & Hehn, T. Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J. Geophys. Res. Atmos. 113, D09104 (2008).

    • Article
    • Google Scholar
  • 10.

    Wang, S. & Davidson, A. Impact of climate variations on surface albedo of a temperate grassland. Agric. For. Meteorol. 142, 133–142 (2007).

    • Article
    • Google Scholar
  • 11.

    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    • Article
    • Google Scholar
  • 12.

    Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

  • 13.

    Zha, T. et al. Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agric. For. Meteorol. 150, 1476–1484 (2010).

    • Article
    • Google Scholar
  • 14.

    Barr, A. G. et al. Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob. Change Biol. 13, 561–576 (2007).

    • Article
    • Google Scholar
  • 15.

    Schwartz, M. D. & Karl, T. R. Spring phenology: nature’s Experiment to detect the effect of “green-up” on surface maximum temperatures. Mon. Weather Rev. 118, 883–890 (1990).

    • Article
    • Google Scholar
  • 16.

    Freedman, J. M., Fitzjarrald, D. R., Moore, K. E. & Sakai, R. K. Boundary layer clouds and vegetation–atmosphere feedbacks. J. Clim. 14, 180–197 (2001).

    • Article
    • Google Scholar
  • 17.

    Donohoe, A. & Battisti, D. S. Atmospheric and surface contributions to planetary albedo. J. Clim. 24, 4402–4418 (2011).

    • Article
    • Google Scholar
  • 18.

    Dorota, M. Influence of the extent and genera of cloud cover on solar radiation intensity. Int. J. Climatol. 32, 2403–2414 (2012).

    • Article
    • Google Scholar
  • 19.

    Hogg, E. H., Price, D. T. & Black, T. A. Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. J. Clim. 13, 4229–4243 (2000).

    • Article
    • Google Scholar
  • 20.

    Manoli, G. et al. Soil–plant–atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Glob. Change Biol. 22, 2238–2254 (2016).

    • Article
    • Google Scholar
  • 21.

    Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).

  • 22.

    Vargas Zeppetello, L. R., Donohoe, A. & Battisti, D. S. Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett. 46, 2781–2789 (2019).

    • Article
    • Google Scholar
  • 23.

    Wielicki, B. A. et al. Changes in Earth’s albedo measured by satellite. Science 308, 825 (2005).

  • 24.

    Strack, J. E., Pielke, R. A. & Adegoke, J. Sensitivity of model-generated daytime surface heat fluxes over snow to land-cover changes. J. Hydrometeorol. 4, 24–42 (2003).

    • Article
    • Google Scholar
  • 25.

    Wang, S. Simulation of evapotranspiration and its response to plant water and CO2 transfer dynamics. J. Hydrometeorol. 9, 426–443 (2008).

    • Article
    • Google Scholar
  • 26.

    Jeong, S. J., Ho, C. I. & Jeong, J. H. Increase in vegetation greenness and decrease in springtime warming over East Asia. Geophys. Res. Lett. 36, 1–5 (2009).

    • Article
    • Google Scholar
  • 27.

    Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

  • 28.

    Wang, W. et al. Industrial and agricultural wastes decreased greenhouse-gas emissions and increased rice grain yield in a subtropical paddy field. Exp. Agric. 54, 623–640 (2018).

    • Article
    • Google Scholar
  • 29.

    Hu, J., Moore, D. J. P., Burns, S. P. & Monson, R. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Change Biol. 16, 771–783 (2010).

    • Article
    • Google Scholar
  • 30.

    Stanhill, G. The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 1881–2000. J. Geophys. Res. Atmos. 116, D03105 (2011).

    • Article
    • Google Scholar
  • 31.

    Rasmusson, E. M. Atmospheric water vapor transport and the water balance of North America: part I. Characteristics of the water vapor flux field. Mon. Weather Rev. 95, 403–426 (1967).

    • Article
    • Google Scholar
  • 32.

    Ryu, Y.-H., Smith, J. A. & Bou-Zeid, E. On the climatology of precipitable water and water vapor flux in the mid-Atlantic region of the United States. J. Hydrometeorol. 16, 70–87 (2014).

    • Article
    • Google Scholar
  • 33.

    Huang, R., Chen, J. & Huang, G. Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv. Atmos. Sci. 24, 993–1023 (2007).

    • Article
    • Google Scholar
  • 34.

    Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    • Article
    • Google Scholar
  • 35.

    Komatsu, K. K., Alexeev, V. A., Repina, I. A. & Tachibana, Y. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air. Sci. Rep. 8, 2872 (2018).

  • 36.

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    • Article
    • Google Scholar
  • 37.

    Baldocchi, D. D. & Vogel, C. A. Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol. 16, 5–16 (1996).

    • Article
    • Google Scholar
  • 38.

    Bonan, G. B. Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sens. Environ. 43, 303–314 (1993).

    • Article
    • Google Scholar
  • 39.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  • 40.

    Curry, C. L., Islam, S. U., Zwiers, F. W. & Déry, S. J. Atmospheric rivers increase future flood risk in western Canada’s largest Pacific river. Geophys. Res. Lett. 46, 1651–1661 (2019).

    • Article
    • Google Scholar
  • 41.

    Cronin, T. W. & Tziperman, E. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl Acad. Sci. USA 112, 11490–11495 (2015).

  • 42.

    Graversen, R. G. & Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dyn. 33, 629–643 (2009).

    • Article
    • Google Scholar
  • 43.

    Ramstein, G., Serafini-Le Treut, Y., Le Treut, H., Forichon, M. & Joussaume, S. Cloud processes associated with past and future climate changes. Clim. Dyn. 14, 233–247 (1998).

    • Article
    • Google Scholar
  • 44.

    Laguë, M. M. & Swann, A. L. S. S. Progressive midlatitude afforestation: impacts on clouds, global energy transport, and precipitation. J. Clim. 29, 5561–5573 (2016).

    • Article
    • Google Scholar
  • 45.

    Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

    • Article
    • Google Scholar
  • 46.

    Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).

    • Google Scholar
  • 47.

    Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    • Article
    • Google Scholar
  • 48.

    Lawrence, P. J. & Chase, T. N. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. Biogeosci. 112, G01023 (2007).

    • Google Scholar
  • 49.

    Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E. & Myneni, R. Coupling of the Common Land Model to the NCAR Community Climate Model. J. Clim. 15, 1832–1854 (2002).

    • Article
    • Google Scholar
  • 50.

    Bonan, G. B. Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide Technical note (NCAR, 1996).

  • 51.

    Bonan, G. B. et al. The Land Surface Climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Clim. 15, 3123–3149 (2002).

    • Article
    • Google Scholar
  • 52.

    Conley, A. J. et al. Description of the NCAR Community Atmosphere Model (CAM5.0) Technical Note (NCAR, 2012).

  • 53.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    • Article
    • Google Scholar
  • 54.

    Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Sustainable water solutions

    Seeding oceans with iron may not impact climate change