in

Complex long-term biodiversity change among invertebrates, bryophytes and lichens

  • 1.

    Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).

  • 2.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

  • 3.

    Brereton, T., Roy, D. B., Middlebrook, I., Botham, M. & Warren, M. The development of butterfly indicators in the United Kingdom and assessments in 2010. J. Insect Conserv. 15, 139–151 (2010).

    • Article
    • Google Scholar
  • 4.

    Van Swaay, C. A. M. et al. The EU Butterfly Indicator for Grassland species: 1990-2017: Technical Report (Butterfly Conservation Europe & ABLE/eBMS, 2015).

  • 5.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

  • 6.

    Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899 (2014).

  • 7.

    Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).

    • Article
    • Google Scholar
  • 8.

    Hambler, C. & Speight, M. R. Extinction rates and butterflies. Science 305, 1563–1565 (2004).

  • 9.

    van Strien, A. J. et al. Modest recovery of biodiversity in a western European country: the living planet index for the Netherlands. Biol. Conserv. 200, 44–50 (2016).

    • Article
    • Google Scholar
  • 10.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

  • 11.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    • Article
    • Google Scholar
  • 12.

    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

  • 13.

    Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

  • 14.

    Thomas, C. D. & Jones, T. H. & Hartley, S. E. ‘Insectageddon’: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

    • Article
    • Google Scholar
  • 15.

    Burns, F. et al. Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS ONE 11, e0151595 (2016).

  • 16.

    Burns, F. et al. An assessment of the state of nature in the United Kingdom: a review of findings, methods and impact. Ecol. Indic. 94, 226–236 (2018).

    • Article
    • Google Scholar
  • 17.

    Hayhow, D. et al. The State of the UK’s Birds 2017 (RSPB, BTO, WWT, DAERA, JNCC, NE and NRW, 2017).

  • 18.

    Fox, R. et al. The State of the UK’s Butterflies 2015 (Butterfly Conservation and the Centre for Ecology & Hydrology, 2015).

  • 19.

    Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K. & Stevens, C. J. Nitrogen deposition causes widespread loss of species richness in British habitats. Glob. Change Biol. 16, 671–679 (2010).

    • Article
    • Google Scholar
  • 20.

    Barlow, K. E. et al. Citizen science reveals trends in bat populations: the National Bat Monitoring Programme in Great Britain. Biol. Conserv. 182, 14–26 (2015).

    • Article
    • Google Scholar
  • 21.

    Pocock, M. J. O., Roy, H. E., Preston, C. D. & Roy, D. B. The Biological Records Centre: a pioneer of citizen science. Biol. J. Linn. Soc. 115, 475–493 (2015).

    • Article
    • Google Scholar
  • 22.

    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).

    • Article
    • Google Scholar
  • 23.

    Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

  • 24.

    Maldonado, C. et al. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Glob. Ecol. Biogeogr. 24, 973–984 (2015).

  • 25.

    Outhwaite, C. L. et al. Prior specification in Bayesian occupancy modelling improves analysis of species occurrence data. Ecol. Indic. 93, 333–343 (2018).

    • Article
    • Google Scholar
  • 26.

    Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    • Article
    • Google Scholar
  • 27.

    van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).

    • Article
    • Google Scholar
  • 28.

    Termaat, T. et al. Distribution trends of European dragonflies under climate change. Divers. Distrib. 25, 936–950 (2019).

    • Article
    • Google Scholar
  • 29.

    Outhwaite, C. L. et al. Annual Estimates of Occupancy for Bryophytes, Lichens and Invertebrates in the UK (1970–2015) (NERC Environmental Information Data Centre, 2019); https://doi.org/10.5285/0ec7e549-57d4-4e2d-b2d3-2199e1578d84

  • 30.

    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

  • 31.

    Gregory, R. & van Strien, A. Wild bird indicators: using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).

    • Article
    • Google Scholar
  • 32.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  • 33.

    Pescott, O. L. et al. Air pollution and its effects on lichens, bryophytes, and lichen-feeding Lepidoptera: review and evidence from biological records. Biol. J. Linn. Soc. 115, 611–635 (2015).

    • Article
    • Google Scholar
  • 34.

    Saal, D. S. & Parker, D. The impact of privatization and regulation on the water and sewerage industry in England and Wales: a translog cost function model. Manage. Decis. Econ. 21, 253–268 (2000).

    • Article
    • Google Scholar
  • 35.

    Vaughan, I. P. & Ormerod, S. J. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 18, 2184–2194 (2012).

    • Article
    • Google Scholar
  • 36.

    Vaughan, I. P. & Gotelli, N. J. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat. Commun. 10, 1956 (2019).

  • 37.

    Langford, T. E. L., Shaw, P. J., Ferguson, A. J. D. & Howard, S. R. Long-term recovery of macroinvertebrate biota in grossly polluted streams: re-colonisation as a constraint to ecological quality. Ecol. Indic. 9, 1064–1077 (2009).

  • 38.

    Balmford, A. & Knowlton, N. Why Earth Optimism? Science 356, 225 (2017).

  • 39.

    Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. 70, 21–34 (2005).

    • Article
    • Google Scholar
  • 40.

    Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).

    • Article
    • Google Scholar
  • 41.

    Mihoub, J. B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 41591 (2017).

  • 42.

    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 16, 222–230 (2018).

    • Article
    • Google Scholar
  • 43.

    Thomas, C. D. Inheritors of the Earth: How Nature Is Thriving in an Age of Extinction (Hachette UK, 2017).

  • 44.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  • 45.

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, 201722477 (2018).

  • 46.

    Mace, G. M., Collen, B., Fuller, R. A. & Boakes, E. H. Population and geographic range dynamics: implications for conservation planning. Phil. Trans. R. Soc. B 365, 3743–3751 (2010).

  • 47.

    Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).

    • Article
    • Google Scholar
  • 48.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

  • 49.

    Bart, J. & Klosiewski, S. P. Use of presence-absence to measure changes in avian density. J. Wildl. Manage. 53, 847–852 (1989).

    • Article
    • Google Scholar
  • 50.

    Webb, T. J., Freckleton, R. P. & Gaston, K. J. Characterizing abundance–occupancy relationships: there is no artefact. Glob. Ecol. Biogeogr. 21, 952–957 (2012).

    • Article
    • Google Scholar
  • 51.

    Buckley, H. L. & Freckleton, R. P. Understanding the role of species dynamics in abundance–occupancy relationships. J. Ecol. 98, 645–658 (2010).

    • Article
    • Google Scholar
  • 52.

    van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234, 116–122 (2019).

    • Article
    • Google Scholar
  • 53.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

  • 54.

    Schmeller, D. S. et al. An operational definition of essential biodiversity variables. Biodivers. Conserv. 26, 2967–2972 (2017).

    • Article
    • Google Scholar
  • 55.

    McGill, B. J. & Dornelas, M. & Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2014).

  • 56.

    Buckland, S. T., Magurran, A. E., Green, R. E. & Fewster, R. M. Monitoring change in biodiversity through composite indices. Phil. Trans. R. Soc. B 360, 243–254 (2005).

  • 57.

    Faraway, J. J. Linear Models with R (Chapman & Hall, CRC, 2009).

  • 58.

    Outhwaite, C. L. et al. Annual estimates of occupancy for bryophytes, lichens and invertebrates in the UK, 1970–2015. Sci. Data 6, 259 (2019).

  • 59.

    Gelman, A. et al. Bayesian Data Analysis (CRC, 2014).


  • Source: Ecology - nature.com

    Sustainable water solutions

    Seeding oceans with iron may not impact climate change