in

Biodiversity of intertidal food webs in response to warming across latitudes

  • 1.

    Brose, U. et al. Climate change in size-structured ecosystems. Phil. Trans. R. Soc. B 367, 2903–2912 (2012).

    • Article
    • Google Scholar
  • 2.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

  • 3.

    Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    • Article
    • Google Scholar
  • 4.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

  • 5.

    Englund, G., Öhlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol. Lett. 14, 914–921 (2011).

    • Article
    • Google Scholar
  • 6.

    Jochum, M., Schneider, F. D., Crowe, T. P., Brose, U. & O’Gorman, E. J. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Phil. Trans. R. Soc. B 367, 2962–2970 (2012).

    • Article
    • Google Scholar
  • 7.

    Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).

  • 8.

    O’Gorman, E. J. et al. Unexpected changes in community size structure in a natural warming experiment. Nat. Clim. Change 7, 659–663 (2017).

    • Article
    • Google Scholar
  • 9.

    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    • Article
    • Google Scholar
  • 10.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    • Article
    • Google Scholar
  • 11.

    Schwarz, B. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nat. Clim. Change 7, 895–900 (2017).

    • Article
    • Google Scholar
  • 12.

    Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature‐dependent consumer‐resource dynamics. Am. Nat. 166, 184–198 (2005).

    • Article
    • Google Scholar
  • 13.

    Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

  • 14.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).

    • Article
    • Google Scholar
  • 15.

    Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Phil. Trans. R. Soc. B 367, 2935–2944 (2012).

    • Article
    • Google Scholar
  • 16.

    Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).

  • 17.

    Shurin, J. B., Clasen, J. L., Greig, H. S., Kratina, P. & Thompson, P. L. Warming shifts top-down and bottom-up control of pond food web structure and function. Phil. Trans. R. Soc. B 367, 3008–3017 (2012).

    • Article
    • Google Scholar
  • 18.

    Kéfi, S. et al. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).

    • Article
    • Google Scholar
  • 19.

    Potapov, A. M., Brose, U., Scheu, S. & Tiunov, A. V. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194, 823–839 (2019).

    • Article
    • Google Scholar
  • 20.

    Mendonça, V. et al. What’s in a tide pool? Just as much food web network complexity as in large open ecosystems. PLoS ONE 13, e0200066 (2018).

  • 21.

    Vucic-Pestic, O., Ehnes, R. B., Rall, B. C. & Brose, U. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Glob. Chang. Biol. 17, 1301–1310 (2011).

    • Article
    • Google Scholar
  • 22.

    Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

    • Article
    • Google Scholar
  • 23.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    • Google Scholar
  • 24.

    Lang, B., Ehnes, R. B., Brose, U. & Rall, B. C. Temperature and consumer type dependencies of energy flows in natural communities. Oikos 126, 1717–1725 (2017).

    • Article
    • Google Scholar
  • 25.

    Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator–prey interactions: first principles of physics predict predator–prey size ratios. Funct. Ecol. 33, 323–334 (2019).

    • Article
    • Google Scholar
  • 26.

    Ho, H., Tylianakis, J. M., Zheng, J. X. & Pawar, S. Predation risk influences food‐web structure by constraining species diet choice. Ecol. Lett. 22, 1734–1745 (2019).

    • Article
    • Google Scholar
  • 27.

    Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919–927 (2019).

    • Article
    • Google Scholar
  • 28.

    Kéfi, S. et al. More than a meal…integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).

    • Article
    • Google Scholar
  • 29.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).

  • 30.

    Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos 125, 595–603 (2016).

    • Article
    • Google Scholar
  • 31.

    Riede, J. O. et al. Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res. 42, 139–170 (2010).

    • Article
    • Google Scholar
  • 32.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

  • 33.

    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Phil. Trans. R. Soc. B 365, 2081–2091 (2010).

    • Article
    • Google Scholar
  • 34.

    Antiqueira, P. A. P., Petchey, O. L. & Romero, G. Q. Warming and top predator loss drive ecosystem multifunctionality. Ecol. Lett. 21, 72–82 (2018).

    • Article
    • Google Scholar
  • 35.

    Amarasekare, P. Effects of temperature on consumer-resource interactions. J. Anim. Ecol. 84, 665–679 (2015).

    • Article
    • Google Scholar
  • 36.

    Fussmann, K. E., Rosenbaum, B., Brose, U. & Rall, B. C. Interactive effects of shifting body size and feeding adaptation drive interaction strengths of protist predators under warming. Preprint at bioRxiv https://doi.org/10.1101/101675 (2017).

  • 37.

    Weinbach, A., Allhoff, K., Thebault, E., Massol, F. & Loeuille, N. Selective effects of temperature on body mass depend on trophic interactions and network position. Preprint at bioRxiv https://doi.org/10.1101/233742 (2017).

  • 38.

    Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Phil. Trans. R. Soc. B 365, 2025–2034 (2010).

    • Article
    • Google Scholar
  • 39.

    Eklöf, A., Kaneryd, L. & Münger, P. Climate change in metacommunities: dispersal gives double-sided effects on persistence. Phil. Trans. R. Soc. B 367, 2945–2954 (2012).

    • Article
    • Google Scholar
  • 40.

    Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).

    • Article
    • Google Scholar
  • 41.

    Tewksburry, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    • Article
    • Google Scholar
  • 42.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

  • 43.

    Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123, 1157–1172 (2014).

    • Article
    • Google Scholar
  • 44.

    Yodzis, P. & Innes, S. Body size and consumer-resource dynamics. Am. Nat. 139, 1151–1175 (1992).

    • Article
    • Google Scholar
  • 45.

    Hirt, M. R., Lauermann, T., Brose, U., Noldus, L. P. J. J. & Dell, A. I. The little things that run: a general scaling of invertebrate exploratory speed with body mass. Ecology 98, 2751–2757 (2017).

    • Article
    • Google Scholar
  • 46.

    Allesina, S., Alonso, D. & Pascual, M. A general model for food web structure. Science 320, 658–661 (2008).

  • 47.

    Levine, S. Several measures of trophic structure applicable to complex food webs. J. Theor. Biol. 83, 195–207 (1980).

    • Article
    • Google Scholar
  • 48.

    Lê, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    • Article
    • Google Scholar
  • 49.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R package version 3.1-143 (2019).

  • 50.

    Brose, U. GlobAL daTabasE of traits and food Web Architecture (GATEWAy) version 1.0. iDiv https://doi.org/10.25829/idiv.283-3-756 (2018).

  • 51.

    Gauzens, B. The temporal dynamics of intertidal pool communities. Zenodo https://doi.org/10.5281/zenodo.3578553 (2020).


  • Source: Ecology - nature.com

    Sustainable water solutions

    Seeding oceans with iron may not impact climate change