in

Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields

  • 1.

    Butler, E. E. & Huybers, P. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ. Res. Lett. 10, 034009 (2015).

    • ADS
    • Google Scholar
  • 2.

    Handmer, J. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 231–290 (IPCC, Cambridge Univ. Press, 2012).

  • 3.

    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    • ADS
    • Google Scholar
  • 4.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    • ADS
    • Google Scholar
  • 5.

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

  • 6.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

  • 7.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

  • 8.

    Butler, E. E. & Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Change 3, 68–72 (2013).

    • ADS
    • Google Scholar
  • 9.

    Basso, B. & Ritchie, J. T. Temperature and drought effects on maize yield. Nat. Clim. Change 4, 233 (2014).

    • ADS
    • Google Scholar
  • 10.

    Fezzi, C. & Bateman, I. The impact of climate change on agriculture: nonlinear effects and aggregation bias in Ricardian models of farmland values. J. Assoc. Environ. Resour. Econ. 2, 57–92 (2015).

    • Google Scholar
  • 11.

    Anderson, C. J., Babcock, B. A., Peng, Y., Gassman, P. W. & Campbell, T. D. Placing bounds on extreme temperature response of maize. Environ. Res. Lett. 10, 124001 (2015).

    • ADS
    • Google Scholar
  • 12.

    Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).

    • ADS
    • Google Scholar
  • 13.

    Carter, E. K., Melkonian, J., Steinschneider, S. & Riha, S. J. Rainfed maize yield response to management and climate covariability at large spatial scales. Agric. For. Meteorol. 256–257, 242–252 (2018).

    • ADS
    • Google Scholar
  • 14.

    Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change 12, 197–202 (2002).

    • Google Scholar
  • 15.

    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 1–9 (2017).

    • Google Scholar
  • 16.

    Shaw, S. B., Mehta, D. & Riha, S. J. Using simple data experiments to explore the influence of non-temperature controls on maize yields in the mid-West and Great Plains. Clim. Change 122, 747–755 (2014).

    • ADS
    • Google Scholar
  • 17.

    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    • ADS
    • Google Scholar
  • 18.

    Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).

    • ADS
    • Google Scholar
  • 19.

    Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 054023 (2017).

    • ADS
    • Google Scholar
  • 20.

    Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H. & Graß, R. Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environ. Res. Lett. 9, 044012 (2014).

    • ADS
    • Google Scholar
  • 21.

    Webber, H. et al. Simulating canopy temperature for modelling heat stress in cereals. Environ. Model. Softw. 77, 143–155 (2016).

    • Google Scholar
  • 22.

    Kaur, G., Zurweller, B. A., Nelson, K. A., Motavalli, P. P. & Dudenhoeffer, C. J. Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields. Agron. J. 109, 97–106 (2017).

    • CAS
    • Google Scholar
  • 23.

    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003–064013 (2019).

    • ADS
    • Google Scholar
  • 24.

    Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biol. 5, 143–113 (2019).

    • Google Scholar
  • 25.

    Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).

    • Google Scholar
  • 26.

    Hsiao, J., Swann, A. L. S. & Kim, S.-H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).

    • ADS
    • Google Scholar
  • 27.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

  • 28.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

  • 29.

    Tao, F., Yokozawa, M. & Zhang, Z. Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric. For. Meteorol. 149, 831–850 (2009).

    • ADS
    • Google Scholar
  • 30.

    Suyker, A. AmeriFlux US-Ne3 Mead – Rainfed Maize-Soybean Rotation Site from 2001–Present (AmeriFlux, 2016); http://ameriflux.lbl.gov/sites/siteinfo/US-Ne3

  • 31.

    Kramer, P. J. & Boyer, J. S. Water Relations of Plants and Soils (Elsevier, 1995).

  • 32.

    Bennett, J. M., Sinclair, T. R., Muchow, R. C. & Costello, S. R. Dependence of stomatal conductance on leaf water potential, turgor potential, and relative water content in field-grown soybean and maize. Crop Sci. 27, 984–990 (1987).

    • Google Scholar
  • 33.

    Cochard, H. Xylem embolism and drought-induced stomatal closure in maize. Planta 215, 466–471 (2002).

  • 34.

    Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345 (1982).

    • CAS
    • Google Scholar
  • 35.

    Wenkert, W., Fausey, N. R. & Watters, H. D. Flooding responses in Zea mays L. Plant Soil 62, 351–366 (1981).

    • Google Scholar
  • 36.

    Yordanova, R. Y. & Popova, L. P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29, 535–541 (2007).

    • CAS
    • Google Scholar
  • 37.

    Voesenek, L. A. C. J. & Bailey-Serres, J. Flood adaptive traits and processes: an overview. New Phytol. 206, 57–73 (2015).

  • 38.

    National Agricultural Statistics Service (US Department of Agriculture, 2019); https://www.nass.usda.gov

  • 39.

    Cui, C. et al. Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 10, 33–19 (2018).

    • ADS
    • Google Scholar
  • 40.

    Ma, H. et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: a comprehensive assessment using global ground-based observations. Remote Sens. Environ. 231, 111215 (2019).

    • ADS
    • Google Scholar
  • 41.

    Albergel, C. et al. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 12, 1323–1337 (2008).

    • ADS
    • Google Scholar
  • 42.

    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 122, 2061–2079 (2017).

    • ADS
    • Google Scholar
  • 43.

    Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    • ADS
    • Google Scholar
  • 44.

    Ukkola, A. M. et al. Evaluating CMIP5 model agreement for multiple drought metrics. J. Hydrometeorol. 19, 969–988 (2018).

    • ADS
    • Google Scholar
  • 45.

    Kell, D. B. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108, 407–418 (2011).

  • 46.

    Messina, C. D. et al. Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron. J. 107, 1978 (2015).

    • CAS
    • Google Scholar
  • 47.

    Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    • Google Scholar
  • 48.

    Nicoullaud, B., King, D. & Tardieu, F. Vertical distribution of maize roots in relation to permanent soil characteristics. Plant Soil 159, 245–254 (1994).

    • Google Scholar
  • 49.

    Ford, T. W., Harris, E. & Quiring, S. M. Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci. 18, 139–154 (2014).

    • ADS
    • Google Scholar
  • 50.

    Bell, J. E. et al. U.S. climate reference network soil moisture and temperature observations. J. Hydrometeorol. 14, 977–988 (2013).

    • ADS
    • Google Scholar
  • 51.

    Diamond, H. J. et al. U.S. climate reference network after one decade of operations: status and assessment. Bull. Am. Meteorol. Soc. 94, 485–498 (2013).

    • ADS
    • Google Scholar
  • 52.

    Slaets, J. I. F., Piepho, H.-P., Schmitter, P., Hilger, T. & Cadisch, G. Quantifying uncertainty on sediment loads using bootstrap confidence intervals. Hydrol. Earth Syst. Sci. 21, 571–588 (2017).

  • 53.

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).


  • Source: Resources - nature.com

    What is the future of lithium battery waste?

    Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms