in

A comparison of bee communities between primary and mature secondary forests in the longleaf pine ecosystem

  • 1.

    Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. 113, 140–145, https://doi.org/10.1073/pnas.1517685113 %J Proceedings of the National Academy of Sciences (2016).

  • 2.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution 25, 345–353, https://doi.org/10.1016/j.tree.2010.01.007 (2010).

    • Article
    • Google Scholar
  • 3.

    Hanula, J. L., Horn, S. & O’Brien, J. J. Have changing forests conditions contributed to pollinator decline in the southeastern United States? Forest Ecology and Management 348, 142–152, https://doi.org/10.1016/j.foreco.2015.03.044 (2015).

    • Article
    • Google Scholar
  • 4.

    Hanula, J. L., Ulyshen, M. D. & Horn, S. Conserving Pollinators in North American Forests: A Review. Natural Areas Journal 36, 427–439, https://doi.org/10.3375/043.036.0409 (2016).

    • Article
    • Google Scholar
  • 5.

    Rivers, J. W. et al. A Review of Research Needs for Pollinators in Managed Conifer Forests. Journal of Forestry 116, 563–572, https://doi.org/10.1093/jofore/fvy052 (2018).

    • Article
    • Google Scholar
  • 6.

    Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. In Old-Growth Forests: Function, Fate and Value (eds. Christian Wirth, Gerd Gleixner, & Martin Heimann) 11–33 (Springer Berlin Heidelberg, 2009).

  • 7.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences 104, 18555–18560, https://doi.org/10.1073/pnas.0703333104 (2007).

  • 8.

    Taki, H. et al. Evaluation of secondary forests as alternative habitats to primary forests for flower-visiting insects. Journal of Insect Conservation 17, 549–556, https://doi.org/10.1007/s10841-012-9539-3 (2013).

    • Article
    • Google Scholar
  • 9.

    Rasmussen, C. Diversity and abundance of orchid bees (Hymenoptera: Apidae, Euglossini) in a tropical rainforest succession. Neotropical Entomology 38, 66–73 (2009).

    • Article
    • Google Scholar
  • 10.

    Hoehn, P., Steffan-Dewenter, I. & Tscharntke, T. Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiversity and Conservation 19, 2189–2200, https://doi.org/10.1007/s10531-010-9831-z (2010).

    • Article
    • Google Scholar
  • 11.

    Gikungu, M., Wittmann, D., Irungu, D. & Kraemer, M. Bee diversity along a forest regeneration gradient in Western Kenya. Journal of Apicultural Research 50, 22–34, https://doi.org/10.3896/ibra.1.50.1.03 (2011).

    • Article
    • Google Scholar
  • 12.

    Hiers, J. K., Wyatt, R. & Mitchell, R. J. J. O. The effects of fire regime on legume reproduction in longleaf pine savannas: is a season selective? 125, 521–530, https://doi.org/10.1007/s004420000469 (2000).

  • 13.

    Noss, R. F. & Scott, J. M. Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. Vol. 28 (US Department of the Interior, National Biological Service, 1995).

  • 14.

    Van Lear, D. H., Carroll, W. D., Kapeluck, P. R. & Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. Forest Ecology and Management 211, 150–165 (2005).

    • Article
    • Google Scholar
  • 15.

    Krause, T. R., Russell, J. M., Zhang, R., Williams, J. W. & Jackson, S. T. Late Quaternary vegetation, climate, and fire history of the Southeast Atlantic Coastal Plain based on a 30,000-yr multi-proxy record from White Pond, South Carolina, USA. Quaternary Research 91, 861–880, https://doi.org/10.1017/qua.2018.95 (2019).

  • 16.

    Means, D. B. In Eastern old-growth forests: Prospects for rediscovery and recovery (ed. M. B. Davis) 210–229 (Island Press, 1996).

  • 17.

    Varner, J. M. & Kush, J. S. Remnant old-growth longleaf pine (Pinus palustris Mill.) savannas and forests of the southeastern USA: Status and threats. Natural Areas Journal 24(2), 141–149 (2004).

    • Google Scholar
  • 18.

    Mitchell, R. et al. Old forests and endangered woodpeckers: Old-growth in the southern coastal plain. Natural Areas Journal 29, 301–310, https://doi.org/10.3375/043.029.0309 (2009).

    • Article
    • Google Scholar
  • 19.

    Gilliam, F. S. & Platt, W. J. Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (longleaf pine) forest. Plant Ecology 140, 15–26 (1999).

    • Article
    • Google Scholar
  • 20.

    Peet, R. K. & Allard, D. J. In Proceedings of the Tall Timbers Fire Ecology Conference. 45–81 (1993).

  • 21.

    Platt, W. J., Evans, G. W. & Davis, M. M. Effects of fire season on flowering of forbs and shrubs in longleaf pine forests. Oecologia 76, 353–363, https://doi.org/10.1007/bf00377029 (1988).

  • 22.

    Folkerts, G. W., Deyrup, M. A. & Sisson, D. C. Arthropods associated with xeric longleaf pine habitats in the southeastern United States: a brief overview. Proceedings of the Tall Timbers Fire Ecology Conference 18, 159–191 (1993).

    • Google Scholar
  • 23.

    Breland, S., Turley, N. E., Gibbs, J., Isaacs, R. & Brudvig, L. A. Restoration increases bee abundance and richness but not pollination in remnant and post-agricultural woodlands. Ecosphere 9, e02435, https://doi.org/10.1002/ecs2.2435 (2018).

    • Article
    • Google Scholar
  • 24.

    Miljanic, A. S. et al. Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. Landscape Ecology 34, 1015–1032, https://doi.org/10.1007/s10980-018-0651-y (2019).

    • Article
    • Google Scholar
  • 25.

    Bartholomew, C. S. & Prowell, D. Comparison of bee diversity in upland and wet flatwood longleaf pine savannas in Louisiana (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society 79, 199–206 (2006).

    • Article
    • Google Scholar
  • 26.

    Michener, C. D. Bees of a Limited Area in Southern Mississippi (Hymenoptera; Apoidea). The American Midland Naturalist 38, 443–455, https://doi.org/10.2307/2421575 (1947).

    • Article
    • Google Scholar
  • 27.

    Bartholomew, C. S., Prowell, D. & Griswold, T. An annotated checklist of bees (Hymenoptera: Apoidea) in longleaf pine savannas of southern Louisiana and Mississippi. Journal of the Kansas Entomological Society 79, 184–198 (2006).

    • Article
    • Google Scholar
  • 28.

    Overing, J. D., Weeks, H. H., Wilson, J. P., Sullivan, J. & Ford, R. D. Soil Survey of Okaloosa County, Florida. (USDA Natural Resource Conservation Service 1995).

  • 29.

    Craul, P. J., Kush, J. S. & Boyer, W. D. Longleaf pine site zones. General Technical Report SRS-89. Vol. 89 (USDA Forest Service, Southern Research Station 2005).

  • 30.

    Hiers, J. K. et al. Simple spatial modeling tool for prioritizing prescribed burning activities at the landscape scale. Conservation Biology 17, 1571–1578 (2003).

    • Article
    • Google Scholar
  • 31.

    Cane, J. H., Minckley, R. L. & Kervin, L. J. Sampling bees (Hymenoptera: Apiformes) for pollinator community studies: pitfalls of pan-trapping. Journal of the Kansas Entomological Society, 225–231 (2000).

  • 32.

    Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. Journal of the Kansas Entomological Society 80, 179–181 (2007).

    • Article
    • Google Scholar
  • 33.

    Mitchell, T. B. Bees of the Eastern United States, Volume I. (The North Carolina Agricultural Experiment Station, Tech. Bul. No. 141 1960).

  • 34.

    Mitchell, T. B. Bees of the Eastern United States, Volume II. (The North Carolina Agricultural Experiment Station, Tech. Bul. No. 152 1962).

  • 35.

    Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 3073, 1–216 (2011).

    • Article
    • Google Scholar
  • 36.

    Gibbs, J., Packer, L., Dumesh, S. & Danforth, B. N. Revision and reclassification of Lasioglossum (Evylaeus), L.(Hemihalictus) and L.(Sphecodogastra) in eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 3672, 1–117 (2013).

    • Article
    • Google Scholar
  • 37.

    R Core Team. R: A language and environment for statistical computing (version 3.6.1). R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org. (2019).

  • 38.

    Lenth, R. V. Least-Squares Means: The R Package lsmeans. Journal of Statistical Software 69, 1–33, https://doi.org/10.18637/jss.v069.i01 (2016).

    • Article
    • Google Scholar
  • 39.

    McCune, B. & Mefford, M. J. PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USA (2011).

  • 40.

    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574, https://doi.org/10.1890/08-1823.1 (2009).

    • Article
    • Google Scholar
  • 41.

    Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366 (1997).

    • Google Scholar
  • 42.

    Brudvig, L. A., Grman, E., Habeck, C. W., Orrock, J. L. & Ledvina, J. A. Strong legacy of agricultural land use on soils and understory plant communities in longleaf pine woodlands. Forest Ecology and Management 310, 944–955, https://doi.org/10.1016/j.foreco.2013.09.053 (2013).

    • Article
    • Google Scholar
  • 43.

    Turley, N. E. & Brudvig, L. A. Agricultural land-use history causes persistent loss of plant phylogenetic diversity. Ecology 97, 2240–2247, https://doi.org/10.1002/ecy.1443 (2016).

    • Article
    • Google Scholar
  • 44.

    Louzada, J., Gardner, T., Peres, C. & Barlow, J. A multi-taxa assessment of nestedness patterns across a multiple-use Amazonian forest landscape. Biological Conservation 143, 1102–1109, https://doi.org/10.1016/j.biocon.2010.02.003 (2010).

    • Article
    • Google Scholar
  • 45.

    Dressler, R. L. Biology of the orchid bees (Euglossini). Annual Review of Ecology and Systematics 13, 373–394 (1982).

    • Article
    • Google Scholar
  • 46.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

  • 47.

    Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nature Communications 7, 12717, https://doi.org/10.1038/ncomms12717 (2016).

  • 48.

    Mitchell, R. J., Hiers, J. K., O’Brien, J. J., Jack, S. B. & Engstrom, R. T. Silviculture that sustains: the nexus between silviculture, frequent prescribed fire, and conservation of biodiversity in longleaf pine forests of the southeastern United States. Can. J. For. Res. 36, 2724–2736 (2006).

    • Article
    • Google Scholar
  • 49.

    Kirkman, L. K. et al. A dynamic reference model: a framework for assessing biodiversity restoration goals in a fire-dependent ecosystem. Ecological Applications 23, 1574–1587, https://doi.org/10.1890/13-0021.1 (2013).

    • Article
    • Google Scholar
  • 50.

    Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. 359, 791–793, https://doi.org/10.1126/science.aao2117%JScience (2018).

  • 51.

    Rubene, D., Schroeder, M. & Ranius, T. Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biological Conservation 184, 201–208, https://doi.org/10.1016/j.biocon.2015.01.029 (2015).

    • Article
    • Google Scholar
  • 52.

    O’Toole, C. & Raw, A. Bees of the World. 192 (Blandford Press 1991).

  • 53.

    Michener, C. D. The bees of the world. (Johns Hopkins University Press 2000).

  • 54.

    Dunn, R. R. Modern Insect Extinctions, the Neglected Majority. 19, 1030-1036, https://doi.org/10.1111/j.1523-1739.2005.00078.x (2005).

  • 55.

    Ulyshen, M. D., Horn, S., Pokswinski, S., McHugh, J. V. & Hiers, J. K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. Forest Ecology and Management 429, 124–132, https://doi.org/10.1016/j.foreco.2018.07.017 (2018).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields

    Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation