in

Evaluation of pulse crops’ functional diversity supporting food production

  • 1.

    Singh, B. B., Ajeigbe, H. A., Tarawali, S. A., Fernandez-Rivera, S. & Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 84, 169–177 (2003).

    • Article
    • Google Scholar
  • 2.

    Tharanathan, R. N. & Mahadevamma, S. Grain legumes – A boon to human nutrition. Trends Food Sci. Technol. 14, 507–518 (2003).

  • 3.

    Stagnari, F., Maggio, A., Galieni, A. & Pisante, M. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4, 2 (2017).

    • Article
    • Google Scholar
  • 4.

    Edwards, T. J. Legumes of the World. South Afr. J. Bot. 73, 272–273 (2007).

    • Article
    • Google Scholar
  • 5.

    Doyle, J. J. The Rest of the Iceberg. Legume Diversity and Evolution in a Phylogenetic Context. Plant Physiol. 131, 900–910 (2003).

  • 6.

    De Boer, J. & Aiking, H. Prospects for pro-environmental protein consumption in Europe: Cultural, culinary, economic and psychological factors. Appetite 121, 29–40 (2018).

  • 7.

    Cuevas, J. A. Neglected Crops 1942 from a different perspective. https://doi.org/10.1017/CBO9781107415324.004 (1992).

  • 8.

    Foyer, C. H. et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2, 16112 (2016).

  • 9.

    Padulosi, S., Thompson, J. & Rudebjer, P. Neglected and underutilized species (2013).

  • 10.

    Tiwari, B. K., Gowen, A. & McKenna, B. M. Pulse foods: processing, quality and nutraceutical applications. (Academic Press, 2011).

  • 11.

    Padulosi, S., Eyzaquirre, P. & Hodgkin, T. Challenges and strategies in promoting conservation and use of neglected and underutilized crop species. Perspect. New Crops New Uses 140–140, https://doi.org/10.1016/j.ajem.2008.02.004 (1999).

  • 12.

    Ghane, S. G., Lokhande, V. H., Ahire, M. L. & Nikam, T. D. Indigofera glandulosa Wendl. (Barbada) a potential source of nutritious food: Underutilized and neglected legume in India. Genet. Resour. Crop Evol. 57, 147–153 (2010).

    • Article
    • Google Scholar
  • 13.

    Mal, B. Neglected and underutilized crop genetic resources for sustainable agriculture. Indian J. Plant Genet. Resour. 20, 1–14 (2007).

    • Google Scholar
  • 14.

    Dansi, A. et al. Diversity of the neglected and underutilized crop species of importance in benin. Sci. World J. 2012 (2012).

  • 15.

    Magrini, M.-B. et al. Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system. Ecol. Econ. 126, 152–162 (2016).

    • Article
    • Google Scholar
  • 16.

    Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).

  • 17.

    Drewnowski, A. Healthy diets for a healthy planet. Am. J. Clin. Nutr. 99, 1284–1285 (2014).

  • 18.

    Ebert, A. W. Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems. Sustainability 6, 319–335 (2014).

    • Article
    • Google Scholar
  • 19.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–846 (2001).

  • 20.

    Jackson, L. E., Pascual, U. & Hodgkin, T. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric. Ecosyst. Environ. 121, 196–210 (2007).

    • Article
    • Google Scholar
  • 21.

    Garnier, E. & Navas, M. L. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. Agron. Sustain. Dev. 32, 365–399 (2012).

    • Article
    • Google Scholar
  • 22.

    Martin, A. R. & Isaac, M. E. Plant functional traits in agroecosystems: A blueprint for research. Journal of Applied Ecology 52, 1425–1435 (2015).

    • Article
    • Google Scholar
  • 23.

    Wood, S. A. et al. Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).

  • 24.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16, 545–556 (2002).

    • Article
    • Google Scholar
  • 25.

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

  • 26.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    • Article
    • Google Scholar
  • 27.

    Cordier, M., Pérez Agúndez, J. A., Hecq, W. & Hamaide, B. A guiding framework for ecosystem services monetization in ecological–economic modeling. Ecosyst. Serv. 8, 86–96 (2014).

    • Article
    • Google Scholar
  • 28.

    Jordan, S. J. et al. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol. Lett. 14, 804–815 (2011).

  • 29.

    Grime, J. P. et al. Integrated screening validates priary axes of specialisation in plants. Oikos 79, 259–281 (1997).

    • Article
    • Google Scholar
  • 30.

    Grime, J. P. Primary strategies in plants. Trans. Bot. Soc. Edinb. 43, 151–160 (2009).

    • Article
    • Google Scholar
  • 31.

    Pierce, S. et al. A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Funct. Ecol. 31, 444–457 (2017).

    • Article
    • Google Scholar
  • 32.

    Yousfi, N., Slama, I., Ghnaya, T., Savouré, A. & Abdelly, C. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Comptes Rendus – Biol. 333, 205–213 (2010).

  • 33.

    Norman, H. C., Cocks, P. S. & Galwey, N. W. Hardseededness in annual clovers: variation between populations from wet and dry environments. Aust. J. Agric. Res. 53, 821–821 (2002).

    • Article
    • Google Scholar
  • 34.

    Berger, J. D., Shrestha, D. & Ludwig, C. Reproductive strategies in mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front. Plant Sci. 8, 548–548 (2017).

  • 35.

    Berger, J. D. & Ludwig, C. Contrasting adaptive strategies to terminal drought-stress gradients in Mediterranean legumes: phenology, productivity, and water relations in wild and domesticated Lupinus luteus L. J. Exp. Bot. 65, 6219–6229 (2014).

  • 36.

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

  • 37.

    Moles, A. T., Falster, D. S., Westoby, M., Wright, I. J. & Vesk, P. A. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    • Article
    • Google Scholar
  • 38.

    Quétier, F., Lavorel, S., Thuiller, W. & Davies, I. Plant-trait-based modeling assessment of ecosystem-service sensitivity to land-use change. Ecol. Appl. 17, 2377–2386 (2007).

  • 39.

    Saugier, B. Plant strategies, vegetation processes, and ecosystem properties. Plant Sci. 161, 813–813 (2001).

  • 40.

    Lavergne, S., Garnier, E. & Debussche, M. Do rock endemic and widespread plant species differ under the Leaf-Height-Seed plant ecology strategy scheme? Ecol. Lett. 6, 398–404 (2003).

    • Article
    • Google Scholar
  • 41.

    Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988).

  • 42.

    Hodgson, A. J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85, 282–294 (1999).

    • Article
    • Google Scholar
  • 43.

    Willson, M. F. Dispersal mode, seed shadows, and colonization patterns. in Frugivory and seed dispersal: ecological and evolutionary aspects (eds. Fleming, T. H. & Estrada, A.) 261–280, https://doi.org/10.1007/978-94-011-1749-4_19.(Springer Netherlands, 1993).

  • 44.

    Askew, A. P., Corker, D., Hodkinson, D. J. & Thompson, K. A New Apparatus to Measure the Rate of Fall of Seeds. Funct. Ecol. 11, 121–125 (1997).

    • Article
    • Google Scholar
  • 45.

    Cipollini, M. L. & Stiles, E. W. Seed predation by the bean weevil acanthoscelides obtectus on phaseolus species: consequences for seed size, early growth and reproduction. Oikos 60, 205–214 (1991).

    • Article
    • Google Scholar
  • 46.

    Leishman, M. R., Wright, I. J., Moles, A. T. & Westoby, M. The evolutionary ecology of seed size. In Seeds: The Ecology of Regeneration in Plant Communities 31–57, https://doi.org/10.1086/284440 (1985).

    • Article
    • Google Scholar
  • 47.

    Volaire, F. A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines. Glob. Change Biol. 24, 2929–2938 (2018).

  • 48.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–7 (2004).

  • 49.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

  • 50.

    Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 187–261 (1992).

  • 51.

    Poorter, H. & Remkes, C. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Plant Ecol. 553–559 (1990).

  • 52.

    Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

  • 53.

    Tribouillois, H., Cruz, P., Cohan, J.-P. & Justes, É. Modelling agroecosystem nitrogen functions provided by cover crop species in bispecific mixtures using functional traits and environmental factors. Agric. Ecosyst. Environ. 207, 218–228 (2015).

  • 54.

    Borrell, A. K. & Hammer, G. L. Nitrogen dynamics and the physiological basis of stay-green in Sorghum. Crop Sci. 40, 1295–1307 (2000).

    • Article
    • Google Scholar
  • 55.

    Chapin, S. F. 16 – Functional role of growth forms in ecosystem and global processes. in Scaling Physiological Processes (eds. Ehleringer, J. R. & Field, C. B.) 287–312, https://doi.org/10.1016/B978-0-12-233440-5.50024-5 (Academic Press, 1993).

    • Google Scholar
  • 56.

    Ta, C. T. & Weiland, R. T. Nitrogen partitioning in Maize during early development. Crop Sci. 32, 443–443 (2010).

    • Article
    • Google Scholar
  • 57.

    Borrell, A., Hammer, G. & Van Oosterom, E. Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? Ann. Appl. Biol. 138, 91–95 (2001).

    • Article
    • Google Scholar
  • 58.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–4 (1997).

  • 59.

    Kikuzawa, K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat. 138, 1250–1263 (1991).

    • Article
    • Google Scholar
  • 60.

    Fayaud, B., Coste, F., Corre-Hellou, G., Gardarin, A. & Dürr, C. Modelling early growth under different sowing conditions: A tool to predict variations in intercrop early stages. Eur. J. Agron. 52, 180–190 (2014).

    • Article
    • Google Scholar
  • 61.

    Tamet, V., Boiffin, J., Dürr, C. & Souty, N. Emergence and early growth of an epigeal seedling (Daucus carota L.): Influence of soil temperature, sowing depth, soil crusting and seed weight. Soil Tillage Res. 40, 25–38 (1996).

    • Article
    • Google Scholar
  • 62.

    Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (2002).

    • Article
    • Google Scholar
  • 63.

    Smartt, J. The evolution of pulse crops. Econ. Bot. 32, 185–198 (1978).

    • Article
    • Google Scholar
  • 64.

    Plaza-Bonilla, D., Nolot, J.-M., Raffaillac, D. & Justes, E. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. Eur. J. Agron. 82, 331–341 (2017).

    • Article
    • Google Scholar
  • 65.

    Nambiar, P. T. C., Rupela, O. P. & Kumar Rao, J. V. D. K. Nodulation and nitrogen fixation in groundnut (Arachis hypogaea L.), chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L. millsp.). Biol. Nitrogen Fixat. Recent Dev. Ed. NS Subba Rao (1988).

  • 66.

    Hardarson, G. et al. Genotypic variation in biological nitrogen fixation by common bean. Plant Soil 152, 59–70 (1993).

    • Article
    • Google Scholar
  • 67.

    Reichardt, K., Hardarson, G., Zapata, F., Kirda, C. & Danso, S. K. A. Site Variability effect on field measurement of symbiotic nitrogen fixation using the 15N isotope dilution method. Soil Biol. Biochem. 19, 405–409 (1987).

  • 68.

    Piha, M. I. & Munns, D. N. Nitrogen fixation capacity of field-grown bean compared to other grain legumes. Agron. J. 79, 690–696 (1987).

    • Article
    • Google Scholar
  • 69.

    Kumar Rao, J. V. D. K. & Dart, P. J. Nodulation, nitrogen fixation and nitrogen uptake in pigeonpea (Cajanus cajan (L.) Millsp) of different maturity groups. Plant Soil 99, 255–266 (1987).

    • Article
    • Google Scholar
  • 70.

    Vance, C. P. Legume symbiotic nitrogen fixation: Agronomic aspects. The Rhizobiaceae 509–530, https://doi.org/10.1007/978-94-011-5060-6_26. (2011).

    • Google Scholar
  • 71.

    McKey, D. Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. Adv. Legume Syst. 5 Nitrogen Factor 5, 211–228 (1994).

    • Google Scholar
  • 72.

    Leavitt, J. R. C., Dobrenz, A. K. & Stone, J. E. Physiological and morphological characteristics of large and small leaflet alfalfa genotypes. Agron. J. 71, 529–529 (1979).

    • Article
    • Google Scholar
  • 73.

    Schubert, K. R. Enzymes of purine biosynthesis and catabolism in Glycine max. 1115–1122 (1981).

  • 74.

    Herridge, D. F. & Pate, J. S. Utilization of net photosynthate for nitrogen fixation and protein Production in an annual legume. Plant Physiol. 60, 759–764 (2008).

    • Article
    • Google Scholar
  • 75.

    Tissue, D. T., Megonigal, J. P. & Thomas, R. B. Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109, 28–33 (1997).

  • 76.

    Hartwig, U. A., Lüscher, A., Nösberger, J. & Van Kessel, C. Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2. Glob. Change Biol. 8, 194–202 (2002).

  • 77.

    Hartwig, U. A. The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect. Plant Ecol. Evol. Syst. 1, 92–120 (1998).

    • Article
    • Google Scholar
  • 78.

    Poorter, H. Construction costs and payback time of biomass: a whole plant perspective. Whole Plant Perspect. Carbon-Nitrogen Interact. 111–127 (1994).

  • 79.

    Kruidhof, H. M., Bastiaans, L. & Kropff, M. J. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 48, 492–502 (2008).

    • Article
    • Google Scholar
  • 80.

    Fan, F. et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil 283, 275–286 (2006).

  • 81.

    Craine, J. M. & Dybzinski, R. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27, 833–840 (2013).

    • Article
    • Google Scholar
  • 82.

    Corre-Hellou, G., Fustec, J. & Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282, 195–208 (2006).

  • 83.

    Nesheim, L. & Boller, B. C. Nitrogen fixation by white clover when competing with grasses at moderately low temperatures. Plant Soil 133, 47–56 (1991).

  • 84.

    Bedoussac, L. & Justes, E. Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat-winter pea intercrop. Plant Soil 330, 37–54 (2010).

  • 85.

    Alege, G. O., Abu, N. E. & Sunday, C. E. Seed protein electrophoresis of some members of the family fabaceae. Afr. J. Biotechnol. 13, 3730–3735 (2014).

  • 86.

    Kazakou, E. et al. Are trait‐based species rankings consistent across data sets and spatial scales? J. Veg. Sci. 25, 235–247 (2014).

    • Article
    • Google Scholar
  • 87.

    Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. J R Statisit Soc B 61, 611–622 (1999).

  • 88.

    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and regression trees. (Chapman & Hall, 1994).

  • 89.

    R Core Team. R: The R project for statistical computing (2018).

  • 90.

    Stacklies, W., Redestig, H., Scholz, M., Walther, D. & Selbig, J. pcaMethods a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167 (2007).

  • 91.

    Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. rpart: recursive partitioning and regression trees. R Package Version 41–10 (2015).


  • Source: Ecology - nature.com

    A material’s insulating properties can be tuned at will

    Instrument may enable mail-in testing to detect heavy metals in water