in

Ganoderma lucidum cultivation affect microbial community structure of soil, wood segments and tree roots

  • 1.

    Wasser, S. P. Reishi or ling zhi (Ganoderma lucidum). Encyclopedia of dietary supplements 1, 603–622 (2005).

    • Google Scholar
  • 2.

    Boh, B., Berovic, M., Zhang, J. & Zhi-Bin, L. Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annu. Rev. 13, 265–301 (2007).

  • 3.

    Qin, L. H., Wang, C., Qin, L. W., Liang, Y. F. & Wang, G. H. Spore powder of Ganoderma lucidum for Alzheimer’s disease: A protocol for systematic review. Medicine 98, e14382 (2019).

  • 4.

    Hua, M. Current situation and development countermeasures of Ganoderma lucidum industry in China. Northern Economy Trade 10, 82–83 (2010). (in Chinese).

    • Google Scholar
  • 5.

    Buckley, D. H. & Schmidt, T. M. The structure of microbial communities in soil and the lasting impact of cultivation. Microb. Ecol. 42, 11–21 (2001).

  • 6.

    Wasof, S. et al. Linkages between aboveground and belowground community compositions in grasslands along a historical land-use intensity gradient. Plant Soil 434, 289–304 (2019).

  • 7.

    Clermont-Dauphin, C., Cabidoche, Y. M. & Meynard, J. M. Effects of intensive monocropping of bananas on properties of volcanic soils in the uplands of the French West Indies. Soil Use Manage 20, 105–113 (2010).

    • Article
    • Google Scholar
  • 8.

    Wang, T. et al. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation. Plant Soil 438, 1–13 (2019).

  • 9.

    Fierer, N., Jackson, J. A., Vilgalys, R. & Jackson, R. B. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120 (2005).

  • 10.

    He, J. Z., Zheng, Y., Chen, C. R., He, Y. Q. & Zhang, L. M. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J. Soil Sediment 8, 349–358 (2008).

  • 11.

    Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).

  • 12.

    Hong, C., Si, Y., Xing, Y. & Li, Y. Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ. Sci. Pollut. Res. 22, 10788–10799 (2015).

  • 13.

    Frindte, K., Pape, R., Werner, K., Löffler, J. & Knief, C. Temperature and soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational and micro-topographic gradients. ISME J. 13, 2031–2043 (2019).

  • 14.

    Black, C. A., Evans, D. D. & Dinauer, R. C. Methods of soil analysis. American Society of Agronomy: Madison, USA, 1–1178 (1965).

  • 15.

    Chang, S., Puryear, J. & Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant. Mol. Biol. Rep. 11, 113–116 (1993).

  • 16.

    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications; Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. Eds.; Academic Press: New York, USA, 315–322 (1990).

  • 17.

    Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166 (2018).

  • 18.

    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  • 19.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 20.

    Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA–based studies. PloS One 6, e27310 (2011).

  • 21.

    UNITE Community. UNITE mothur release. Version 01.12.2017. UNITE Community, https://doi.org/10.15156/BIO/587478 (2017).

  • 22.

    Quast, C., et al The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (Database), D590–D596 (2013).

  • 23.

    Mothur Calculators. Available online: https://www.mothur.org/wiki/Calculators (04-26-2019).

  • 24.

    R Core Team. R: A language and environment for statistical computing. R foundation for Statistical Computing: Vienna, Austria (2013).

  • 25.

    Plassart, P. et al. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9, e605 (2019).

  • 26.

    Lienhard, P. et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 34, 525–533 (2014).

    • Article
    • Google Scholar
  • 27.

    Constancias, F. et al. Mapping and determinism of soil microbial community distribution across an agricultural landscape. MicrobiologyOpen 4, 505–517 (2015).

  • 28.

    Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PloS One 12, e0190128 (2017).

  • 29.

    Brinkmann, N. et al. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep. 9, e3403 (2019).

  • 30.

    Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J. & Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 7, 1641–1650 (2013).

  • 31.

    Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

  • 32.

    Hibbett, D. S. et al. 14 Agaricomycetes, In Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol. 7A; McLaughlin D., Spatafora J. Eds.; Springer: Berlin, Germany, 373–429 (2014).

  • 33.

    Wang, Z. et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biol. Fert. Soils 55, 121–134 (2019).

  • 34.

    Zhang, N. & Wang. Z. 3 Pezizomycotina: Sordariomycetes and Leotiomycetes. In Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 7B; McLaughlin D., Spatafora J. Eds.; Springer: Berlin, Germany, 57–88 (2015).

  • 35.

    Trujillo, M. E. Actinobacteria. eLS, 1–16, https://doi.org/10.1002/9780470015902.a0020366.pub2 (2001).

  • 36.

    Shinmen, Y., Shimizu, S., Akimoto, K., Kawashima, H. & Yamada, H. Production of arachidonic acid by Mortierella fungi. Appl. Biochem. Biotech. 31, 11–16 (1989).

    • CAS
    • Google Scholar
  • 37.

    Papanikolaou, S., Komaitis, M. & Aggelis, G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresource Technol. 95, 287–291 (2004).

  • 38.

    Bari, E. et al. Ecology of wood‐inhabiting fungi in northern forests of Iran. Forest Pathol. 49, e12501 (2019).

    • Article
    • Google Scholar
  • 39.

    Cho, M. A. et al. Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents. Biomol. Ther. 27, 127 (2019).

    • Article
    • Google Scholar
  • 40.

    Prudence, S. et al. Root-associated archaea: investigating the niche occupied by ammonia oxidising archaea within the wheat root microbiome. Access Microbiol. 1A, https://doi.org/10.1099/acmi.ac2019.po0112 (2019).

  • 41.

    He, W. et al. Effect of paraquat on soil bacteria diversity in a young eucalypt plantation. Acta Scientiae Circumstantiae 32, 2857–2864 (2012).

    • CAS
    • Google Scholar
  • 42.

    Lee, J. et al. Comparative microbiome analysis of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae. J. Allergy Clin. Immun 143, 1620–1623 (2019).

  • 43.

    Huq, M. A., Akter, S. & Lee, S. Y. Mucilaginibacter formosus sp. nov., a bacterium isolated from road-side soil. Antonie van Leeuwenhoek 112, 513–521 (2019).

  • 44.

    Gadkari, P., Haggblom, M., Barkay, T., Kerkhof, L. & Mannisto, M. Ecology and physiological potential of tundra soil bacteria. Detail 2020, 01–31 (2019).

    • Google Scholar
  • 45.

    Feng, Y. et al. Effect of Sphingomonas sp. strain on degradation of polyphenols in redried tobacco leaves. Acta Tabacaria Sinica 25, 19–24 (2019).

    • Google Scholar
  • 46.

    Liu, J., Lin, H., Dong, Y. & Li, B. Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings. Environmental Pollution 250, 284–291 (2019).

  • 47.

    Zhang, Y., Li, Q., Chen, Y., Dai, Q. & Hu, J. Mudflat reclamation causes changes of gene abundance in nitrogen cycle under long‐term rice cultivation. J. basic microbiol, https://doi.org/10.1002/jobm.201800660 (2019).

  • 48.

    Liuting, Z. et al. Variation in soil fungal community structure during successive rotations of Casuarina equisetifolia plantations as determined by high-throughput sequencing analysis. Plant Growth Regulation 87, 445–453 (2019).

  • 49.

    Lasota, S., Stephan, I., Horn, M. A., Otto, W. & Noll, M. Copper in wood preservatives delayed wood decomposition and shifted soil fungal but not bacterial community composition. Appl. Environ. Microbiol. 85, e02391–18 (2019).

  • 50.

    Fischer, C. et al. Plant species richness and functional groups have different effects on soil water content in a decade‐long grassland experiment. J. Ecol. 107, 127–141 (2019).

    • Article
    • Google Scholar
  • 51.

    Colin, Y. et al. Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Sci. Rep. 7, e9604 (2017).

  • 52.

    Ren, F., Dong, W., Sun, H. & Yan, D. H. Endophytic Mycobiota of Jingbai Pear Trees in North China. Forests 10((3)), 260 (2019).

    • Article
    • Google Scholar
  • 53.

    Li, X. et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 13((3)), 738 (2019).

  • 54.

    Khan, I. et al. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Food. 41, 191–201 (2018).

  • 55.

    Chang, C. J. et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Commun. 6, 7489 (2015).


  • Source: Ecology - nature.com

    MIT Solve announces 2020 global challenges

    Enter the twilight zone: scientists dive into the oceans’ mysterious middle