Pulwarty, R. S. & Sivakumar, M. V. K. Information systems in a changing climate: early warnings and drought risk management. Weather Clim. Extrem. 3, 14–21 (2014).
Global Assessment Report on Disaster Risk Reduction (UNDRR, 2019).
Wilhite, D. A. & Pulwarty, R. S. in Drought and Water Crises: Integrating Science, Management, and Policy (eds Wilhite, D. & Pulwarty, R. S.) Ch. 25 (CRC, 2017).
Christensen, J. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2007).
Seneviratne, S. I. et al. in Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).
Wilhite, D. A., Sivakumar, M. V. K. & Pulwarty, R. Managing drought risk in a changing climate: the role of national drought policy. Weather Clim. Extrem. 3, 4–13 (2014).
Svoboda, M. et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).
Otkin, J. A. et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 99, 911–919 (2018).
Robertson, A. W. et al. Improving and promoting subseasonal to seasonal prediction. Bull. Am. Meteorol. Soc. 96, ES49–ES53 (2015).
Hoerling, M. P. et al. Is a transition to semipermanent drought conditions imminent in the U.S. Great Plains? J. Clim. 25, 8380–8386 (2012).
Namias, J. Anatomy of Great Plains protracted heat waves (especially the 1980 U.S. summer drought). Mon. Weather Rev. 110, 824–838 (1982).
Yuan, X., Wang, L. & Wood, E. F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 99, S86–S90 (2018).
Yuan, X., Ma, Z., Pan, M. & Shi, C. Microwave remote sensing of short‐term droughts during crop growing seasons. Geophys. Res. Lett. 42, 4394–4401 (2015).
Li, Y. et al. Mechanisms and early warning of drought disasters: experimental drought meteorology research over China. Bull. Am. Meteorol. Soc. 100, 673–687 (2019).
Nguyen, H. et al. Using evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab2103 (2019).
Ford, T. W. & Labosier, C. F. Meteorological conditions associated with the onset of flash drought in the eastern United States. Agric. Meteorol. 247, 414–423 (2017).
Hobbins, M. T., Ramírez, J. A. & Brown, T. C. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL019846 (2004).
Ramírez, J. A., Hobbins, M. T. & Brown, T. C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys. Res. Lett. 32, L15401 (2005).
Koster, R. D. et al. Flash drought as captured by reanalysis data: disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeorol. https://doi.org/10.1175/JHM-D-18-0242.1 (2019).
Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).
Fischer, E. M., Seneviratne, S. I., Lüthi, D. & Schär, C. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34, L06707 (2007).
Su, H., Yang, Z.-L., Dickinson, R. E. & Wei, J. Spring soil moisture–precipitation feedback in the Southern Great Plains: how is it related to large-scale atmospheric conditions? Geophys. Res. Lett. 41, 1283–1289 (2014).
Hoerling, M. et al. Causes and predictability of the 2012 Great Plains drought. Bull. Am. Meteorol. Soc. 95, 269–282 (2014).
Mo, K. C. & Lettenmaier, D. P. Precipitation deficit flash droughts over the United States. J. Hydrometeorol. 17, 1169–1184 (2016).
Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Amplified warming of droughts in southern United States in observations and model simulations. Sci. Adv. 4, eaat2380 (2018).
Pegion, K. et al. The Subseasonal Experiment (SubX): a multi-model subseasonal prediction experiment. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-18-0270.1 (2019).
Chen, L. G. et al. Flash drought characteristics based on U.S. Drought Monitor. Atmosphere (Basel) 10, 498 (2019).
Dirmeyer, P. A., Gentine, P., Ek, M. B. & Balsamo, G. Sub-Seasonal to Seasonal Prediction: The Gap Between Weather and Climate Forecasting (Robertson, A. W. & Vitart, F.) 165–181 (Elsevier, 2019).
Waliser, D. E. et al. Potential predictability of the Madden–Julian oscillation. Bull. Am. Meteorol. Soc. 84, 33–50 (2003).
Hendon, H. H. et al. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Clim. 20, 2452–2467 (2007).
Zhao, M. & Hendon, H. H. Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol. Soc. 135, 337–352 (2009).
Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts (National Academies Press, 2016).
Zhu, H. et al. Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Weather Rev. 142, 1556–1569 (2014).
Wheeler, M. C., Zhu, H., Sobel, A. H., Hudson, D. & Vitart, F. Seamless precipitation prediction skill comparison between two global models. Q. J. R. Meteorol. Soc. 143, 374–383 (2017).
Wang, L. & Robertson, A. W. Week 3–4 predictability over the United States assessed from two operational ensemble prediction systems. Clim. Dyn. 52, 5861–5875 (2019).
Hudson, D. et al. Forewarned is forearmed: extended-range forecast guidance of recent extreme heat events in Australia. Weather Forecast. 31, 697–711 (2016).
Vitart, F. & Robertson, A. W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 (2018).
Lehner, F. et al. Mitigating the impacts of climate nonstationarity on seasonal streamflow predictability in the U.S. Southwest. Geophys. Res. Lett. 44, 12208–12217 (2017).
McEvoy, D. J. et al. The Evaporative Demand Drought Index. Part II: CONUS-wide assessment against common drought indicators. J. Hydrometeorol. 17, 1763–1779 (2016).
Shukla, S. et al. Examining the value of global seasonal reference evapotranspiration forecasts to support FEWS NET’s food insecurity outlooks. J. Appl. Meteorol. Climatol. 56, 2941–2949 (2017).
Zhang, C. et al. CAUSES: diagnosis of the summertime warm bias in CMIP5 climate models at the ARM southern Great Plains site. J. Geophys. Res. Atmos. 123, 2968–2992 (2018).
Vitart, F. Madden–Julian Oscillation prediction and teleconnections in the S2S database. Q. J. R. Meteorol. Soc. 143, 2210–2220 (2017).
Ukkola, A. M. et al. Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environ. Res. Lett. 11, 104012 (2016).
Vitart, F. et al. The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Am. Meteorol. Soc. 98, 163–173 (2017).
Koster, R. D. et al. Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys. Res. Lett. 37, https://doi.org/10.1029/2009GL041677 (2010).
Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).
Mo, K. C. & Lettenmaier, D. P. Heat wave flash droughts in decline. Geophys. Res. Lett. 42, 2823–2829 (2015).
Wang, L., Yuan, X., Xie, Z., Wu, P. & Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 6, 30571 (2016).
Zhang, Y., You, Q., Chen, C. & Li, X. Flash droughts in a typical humid and subtropical basin: a case study in the Gan River Basin, China. J. Hydrol. 551, 162–176 (2017).
Barnett, T. P. et al. Human-induced changes in the hydrology of the Western United States. Science 319, 1080–1083 (2008).
Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).
Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).
Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Feng, S. et al. Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? J. Clim. 30, 265–278 (2017).
Lehner, F. et al. Projected drought risk in 1.5 °C and 2 °C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).
Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Bonfils, C. et al. Competing influences of anthropogenic warming, ENSO, and plant physiology on future terrestrial aridity. J. Clim. 30, 6883–6904 (2017).
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. https://doi.org/10.1038/s41561-019-0480-x (2019).
Dirmeyer, P. A. et al. Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeorol. 13, 981–995 (2012).
Otkin, J. A. et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. Meteorol. 218–219, 230–242 (2016).
Meko, D. M. et al. Medieval drought in the upper Colorado River Basin. Geophys. Res. Lett. 34, L10705 (2007).
Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).
Woodhouse, C., Stahle, D. & Villanueva Díaz, J. Rio Grande and Rio Conchos water supply variability over the past 500 years. Clim. Res. 51, 147–158 (2012).
Woodhouse, C. A. & Pederson, G. T. Investigating runoff efficiency in Upper Colorado River streamflow over past centuries. Water Resour. Res. 54, 286–300 (2018).
Lehner, F., Wahl, E. R., Wood, A. W., Blatchford, D. B. & Llewellyn, D. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett. 44, 4124–4133 (2017).
Zhao, M. et al. Weakened eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29, 6805–6822 (2016).
Huning, L. S. & AghaKouchak, A. Mountain snowpack response to different levels of warming. Proc. Natl Acad. Sci. USA 115, 10932–10937 (2018).
Harpold, A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos https://doi.org/10.1029/2017EO068775 (2017).
Hoell, A., Perlwitz, J. & Eischeid, J. Drought Assessment Report: The Causes, Predictability, and Historical Context of the 2017 US Northern Great Plains Drought (NOAA/NIDIS/CIRES, 2019).
Pulwarty, R. S. & Verdin, J. P. in Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies 2nd edn (ed. Birkmann, J.) 124–147 (United Nations Univ. Press, 2013).
Cutter, S. et al. in Special Report on Managing the Risks of Extremes and Disaster to Advance Climate Change Adaptation (eds Field, C. B. et al.) 291–338 (IPCC, Cambridge Univ. Press, 2012).
Shrader-Frechette, K. S. Environmental Justice: Creating Equality, Reclaiming Democracy. Environmental Ethics and Science Policy (Oxford Univ. Press, 2002).
Jamieson, D. Ethics and the Environment: An Introduction (Cambridge Univ. Press, 2008).
Pulwarty, R. S. et al. in Mapping Vulnerability: Disasters, Development and People (eds Bankoff, G. & Frerks, G.) Ch. 6 (Routledge, 2004).
Allis, E. et al. The future of climate services. World Meteorol. Organ. Bull. 68, https://public.wmo.int/en/resources/bulletin/future-of-climate-services (2019).
Gay-Antaki, M. & Liverman, D. Climate for women in climate science: women scientists and the Intergovernmental Panel on Climate Change. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1710271115 (2018).
Kirtman, B. P. et al. The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95, 585–601 (2014).
Alfieri, L. et al. GloFAS—global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 17, 1161–1175 (2013).
Arheimer, B. et al. Global catchment modelling using World-Wide HYPE (WWH), open data and stepwise parameter estimation. Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2019-111 (2019).
Yuan, X. et al. Anthropogenic shift towards higher risk of flash drought over China. Nat. Commun. 10, 4661 (2019).
Hobbins, M. T., McEvoy, D. J. & Hain, C. R. in Drought and Water Crises: Integrating Science, Management, and Policy (eds Wilhite, D. A. & Pulwarty, R. S.) Ch. 11 (CRC, 2017).
Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415 (1994).
Livneh, B. et al. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J. Clim. 26, 9384–9392 (2013).
Livneh, B. et al. A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950-2013. Sci. Data 2, 150042 (2015).
Lukas, J., Hobbins, M. T., Rangwala, I. & EDDI Team. The EDDI User Guide (NOAA, 2017); https://www.esrl.noaa.gov/psd/eddi/pdf/EDDI_UserGuide_v1.0.pdf
Source: Resources - nature.com