in

Economic Diversification Supported the Growth of Mongolia’s Nomadic Empires

  • 1.

    Myadar, O. Imaginary nomads: Deconstructing the representation of Mongolia as a land of nomads. Inner Asia 335–362 (2011).

  • 2.

    Golden, P. B. Central Asia in World History. Oxford: Oxford University Press. (2011).

  • 3.

    Liu, X. The Silk Road in World History. Oxford: Oxford University Press. (2010).

  • 4.

    Beckwith, C. I. Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present. Princeton: Princeton University Press. (2009).

  • 5.

    Di Cosmo, N. Ancient China and its Enemies: The Rise of Nomadic Power in East Asian History. Cambridge: Cambridge University Press. (2002).

  • 6.

    Barfield, T. J. The shadow empires: Imperial state formation along the Chinese-nomad frontier. Empires: perspectives from archaeology and history 122, 10 (2001).

    • Google Scholar
  • 7.

    Honeychurch, W. Alternative Complexities: The Archaeology of Pastoral Nomadic States. J Archaeol. Res. 22, 277–326 (2014).

    • Article
    • Google Scholar
  • 8.

    Sinopoli, C. M. The Archaeology of Empires. Annu. Rev. Anthropol. 23, 159–180 (1994).

    • Article
    • Google Scholar
  • 9.

    Pomper, P. The History and Theory of Empires. Hist. Theory 44, 1–27 (2005).

    • Article
    • Google Scholar
  • 10.

    Morris, I. & Scheidel, W. The Dynamics of Ancient Empires: State Power from Assyria to Byzantium. Oxford University Press. (2009).

  • 11.

    Hastorf, C. A. & Johannessen, S. Pre-Hispanic political change and the role of maize in the Central Andes of Peru. Am. Anthropol. 95, 115–138 (1993).

    • Article
    • Google Scholar
  • 12.

    Rösch, M., Fischer, E. & Märkle, T. Human diet and land use in the time of the Khans—Archaeobotanical research in the capital of the Mongolian Empire, Qara Qorum, Mongolia. Veg. Hist. Archaeobot. 14, 485–492 (2005).

    • Article
    • Google Scholar
  • 13.

    Kim, H. & 金浩東 The Unity of the Mongol Empire and Continental Exchanges over Eurasia. Journal of Central Eurasian Studies 1, 15–42 (2009).

    • Google Scholar
  • 14.

    Honeychurch, W. & Makarewicz, C. A. The Archaeology of Pastoral Nomadism. Annu. Rev. Anthropol. 45, 341–359 (2016).

    • Article
    • Google Scholar
  • 15.

    Hunt, H. V. et al. Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg. Hist. Archaeobot. 17, 5–18 (2008).

  • 16.

    Hunt, H. V. et al. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol. Ecol. 20, 4756–4771 (2011).

  • 17.

    Lightfoot, E., Liu, X. & Jones, M. K. Why move starchy cereals? A review of the isotopic evidence for prehistoric millet consumption across Eurasia. World. Archaeology 45, 574–623 (2013).

    • Google Scholar
  • 18.

    Spengler, R. N. Agriculture in the Central Asian Bronze Age. J. World Prehist. 28, 215–253 (2015).

    • Article
    • Google Scholar
  • 19.

    Wang, T. et al. Tianshanbeilu and the Isotopic Millet Road: reviewing the late Neolithic/Bronze Age radiation of human millet consumption from north China to Europe. Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwx015 (2017).

    • Article
    • Google Scholar
  • 20.

    Svyatko, S. V., Schulting, R. J., Mallory, J. & Murphy, E. M. Stable isotope dietary analysis of prehistoric populations from the Minusinsk Basin, Southern Siberia, Russia: a new chronological framework for the introduction of millet to the eastern Eurasian steppe. J. of Arch. Sci. (2013).

  • 21.

    Yang, Y. et al. Economic Change in the Prehistoric Hexi Corridor (4800-2200 bp), North-West China. Archaeometry. https://doi.org/10.1111/arcm.12464 (2019).

  • 22.

    Motuzaite Matuzeviciute, G. et al. The extent of cereal cultivation among the Bronze Age to Turkic period societies of Kazakhstan determined using stable isotope analysis of bone collagen. J. Archaeol. Sci. 59, 23–34 (2015).

    • Article
    • Google Scholar
  • 23.

    Ventresca Miller, A. R. & Makarewicz, C. A. Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe. Scientific Reports 9, (2019).

  • 24.

    Spengler, R. N. Fruit from the Sands: Artifacts of the Silk Road on Your Dinner Table. University of California Press. (2019).

  • 25.

    Di Cosmo, N. Ancient Inner Asian Nomads: Their Economic Basis and Its Significance in Chinese History. J. Asian Stud. 53, 1092–1126 (1994).

    • Article
    • Google Scholar
  • 26.

    Spengler, R. N., Ryabogina, N., Tarasov, P. E. & Wagner, M. The spread of agriculture into northern Central Asia: Timing, pathways, and environmental feedbacks. Holocene 26, 1527–1540 (2016).

  • 27.

    Korolyuk, E. A. & Polosmak, N. V. Plant remains from Noin Ula Burial Mounds 20 and 31 (Northern Mongolia). Archaeology, Ethnology and Anthropology of Eurasia 38, 57–63 (2010).

    • Article
    • Google Scholar
  • 28.

    Hermes, T. R. et al. Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s Silk Roads. Scientific Reports vol. 8 (2018).

  • 29.

    Murphy, E. M. et al. Iron Age pastoral nomadism and agriculture in the eastern Eurasian steppe: implications from dental palaeopathology and stable carbon and nitrogen isotopes. J. Archaeol. Sci. 40, 2547–2560 (2013).

    • Article
    • Google Scholar
  • 30.

    Machicek, M. L. Reconstructing Diet, Health and Activity Patterns in Early Nomadic Pastoralist Communities of Inner Asia. University of Sheffield. (2011).

  • 31.

    Ventresca Miller, A. et al. Subsistence and social change in central Eurasia: stable isotope analysis of populations spanning the Bronze Age transition. J. Archaeol. Sci. 42, 525–538 (2014).

  • 32.

    van der Merwe, N. J. & Vogel, J. C. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).

  • 33.

    Ambrose, S. H. & Norr, L. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. Prehistoric Human Bone 1–37 (1993).

  • 34.

    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48, 625–639 (1984).

  • 35.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    • Article
    • Google Scholar
  • 36.

    van Klinken, G. J. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. J. Archaeol. Sci. 26, 687–695 (1999).

    • Article
    • Google Scholar
  • 37.

    An, C.-B., Chen, F.-H. & Barton, L. Holocene environmental changes in Mongolia: A review. Glob. Planet. Change 63, 283–289 (2008).

  • 38.

    Schwanghart, W., Schütt, B. & Walther, M. Holocene climate evolution of the Ugii Nuur basin, Mongolia. Adv. Atmos. Sci. 25, 986–998 (2008).

    • Article
    • Google Scholar
  • 39.

    Stacy, E. M. Stable Isotopic Analysis of Equid (Horse) Teeth from Mongolia. University of Pittsburgh, (2009).

  • 40.

    Toderich, K. et al. C3/C4 plants in the vegetation of Central Asia, geographical distribution and environmental adaptation in relation to climate. Climate Change and Terrestrial Carbon Sequestration in Central Asia 33–63 (2007).

  • 41.

    Ventresca Miller, A. R. et al. Pastoralist Mobility in Bronze Age Landscapes of Northern Kazakhstan: 87Sr/86Sr and δ18O Analyses of Human Dentition from Bestamak and Lisakovsk. Environ. Archaeol. 23, 352–366 (2018).

    • Article
    • Google Scholar
  • 42.

    Wang, C. et al. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. J. Plant Ecol. 9, 576–585 (2016).

    • Article
    • Google Scholar
  • 43.

    Auerswald, K., Max, H. O., Tungalag, R., Bai, Y. & Schnyder, H. Sheep Wool δ13C Reveals No Effect of Grazing on the C3/C4 Ratio of Vegetation in the Inner Mongolia–Mongolia Border Region Grasslands. PLoS One 7, e45552 (2012).

  • 44.

    Makarewicz, C. A. Winter is coming: seasonality of ancient pastoral nomadic practices revealed in the carbon (δ13C) and nitrogen (δ15N) isotopic record of Xiongnu caprines. Archaeol. Anthropol. Sci. 9, 405–418 (2017).

    • Article
    • Google Scholar
  • 45.

    Burnik Šturm, M., Ganbaatar, O., Voigt, C. C. & Kaczensky, P. Sequential stable isotope analysis reveals differences in multi-year dietary history of three sympatric equid species in SW Mongolia. J. Appl. Ecol. 54, 1110–1119 (2017).

  • 46.

    Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123, 15–31 (2000).

  • 47.

    Davie, H., Murdoch, J. D., Lini, A., Ankhbayar, L. & Batdorj, S. Carbon and Nitrogen Stable Isotope Values for Plants and Mammals in a Semi-Desert Region of Mongolia. Mong. J. Biol. Sci. 12, 33–43 (2014).

    • Article
    • Google Scholar
  • 48.

    Makarewicz, C. & Tuross, N. Foddering by Mongolian pastoralists is recorded in the stable carbon (δ13C) and nitrogen (δ15N) isotopes of caprine dentinal collagen. J. Archaeol. Sci. 33, 862–870 (2006).

    • Article
    • Google Scholar
  • 49.

    Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).

    • Article
    • Google Scholar
  • 50.

    Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301 (2012).

    • Article
    • Google Scholar
  • 51.

    Fenner, J. N., Tumen, D. & Khatanbaatar, D. Food fit for a Khan: stable isotope analysis of the elite Mongol Empire cemetery at Tavan Tolgoi, Mongolia. J. Archaeol. Sci. 46, 231–244 (2014).

  • 52.

    de Rachewiltz, I. The Secret History of the Mongols. The Mongolia Society Bulletin 9, 55–69 (1970).

    • Google Scholar
  • 53.

    (of Rubruck.), W. The Mission of Friar William of Rubruck: His Journey to the Court of the Great Khan Mongke, 1253–1255. (Hakluyt Society, 1990).

  • 54.

    Ban, G. Han shu. vol. 5 (Ding wen shu ju, 1962).

  • 55.

    Sima, Q. Shiji (Records of the grand historian). Qin Dynasty Volume (transl. Wtson, B.)(Columbia University Press, New York, 1961) (1959).

  • 56.

    Song, L. & Others. Yuanshi [History of the Yuan Dynasty]. Beijing: Zhong Hua Book Company (1976).

  • 57.

    Bemmann, J., Höllmann, T. O., Ahrens, B., Kaiser, T. & Müller, S. A Stone Quarry in the Hinterland of Karakorum, Mongolia, with Evidence of Chinese Stonemasons. Journal of Inner Asian Art and Archaeology 6, 101–136 (2011).

    • Article
    • Google Scholar
  • 58.

    Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl. Acad. Sci. USA 115, E11248–E11255 (2018).

  • 59.

    Spengler, R. N., de Nigris, I., Cerasetti, B., Carra, M. & Rouse, L. M. The breadth of dietary economy in Bronze Age Central Asia: Case study from Adji Kui 1 in the Murghab region of Turkmenistan. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2016.03.029 (2016).

    • Article
    • Google Scholar
  • 60.

    Amartüvshin, N. Tariany khar budaag (panicum miliaceum L.) Mongol orond nutagshuulsan tüükhees. in Syan’bi, Zhuzhany üeiin tüükh, soyolyn sudalgaa (ed. Ts Odbaatar And Ts) 152–158 (2018).

  • 61.

    Wright, J., Honeychurch, W. & Amartuvshin, C. The Xiongnu settlements of Egiin Gol, Mongolia. Antiquity 83, 372–387 (2009).

    • Article
    • Google Scholar
  • 62.

    Wright, J., Honeychurch, W. & Amartuvshin, C. Initial findings of the Baga Gazaryn Chuluu archaeological survey (2003–2006). Antiquity 81, 313 (2007).

    • Google Scholar
  • 63.

    Davydova, A. Ivolginskii arkheologicheskii kompleks: Ivolginskoe gorodishche. Saint Petersburg: AziatlKA (1995).

  • 64.

    Pousaz, N., et al. L’Habitat Xiongnu de Boroo Gol. Gollion (2013).

  • 65.

    Alcock, S. E., John H D’Arms Collegiate Professor of Classical Archaeology and Classics and Arthur F Thurnau Professor Susan E Alcock, D’Altroy, T. N., Morrison, K. D. & Sinopoli, C. M. Empires: Perspectives from Archaeology and History. Cambridge: Cambridge University Press. (2001).

  • 66.

    Chase-Dunn, C. A. T. D. H. Cross-World-System Comparisons: Similarities and Differences. in World-Systems and Civilizations (ed. Sanderson, S.) (1996).

  • 67.

    Khazanov, A. M. & Wink, A. Nomads in the sedentary world. London: Routledge. (2001).

  • 68.

    Grousset, R. The Empire of the Steppes: A History of Central Asia. (Rutgers University Press, 1970).

  • 69.

    Yu, Y. Nomads and Han China. Expanding Empires: Cultural Interactions and Exchange in World Societies from Ancient to Early Modern Times. Wilmington, DE: A Scholarly Resource Inc 133–141 (2002).

  • 70.

    Bocquet-Appel, J.-P. The Neolithic demographic transition, population pressure and cultural change. Comparative Civilizations Review 58, 6 (2008).

    • Google Scholar
  • 71.

    Zhao, Z. New Archaeobotanic Data for the Study of the Origins of Agriculture in China. Curr. Anthropol. 52, S295–S306 (2011).

    • Article
    • Google Scholar
  • 72.

    Barton, L. et al. Agricultural origins and the isotopic identity of domestication in northern China. Proc. Natl. Acad. Sci. USA 106, 5523–5528 (2009).

  • 73.

    Hosner, D., Wagner, M., Tarasov, P. E., Chen, X. & Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze. Age: An overview. The Holocene. 26, 1576–1593 (2016).

    • ADS
    • Google Scholar
  • 74.

    Boserup, E. Agricultural Growth and Population Change. In The World of Economics (eds. Eatwell, J., Milgate, M. & Newman, P.) p. 1–14 Palgrave Macmillan UK. (1991).

  • 75.

    Spengler, R. N., Miller, N. F., Neef, R., Tourtellotte, P. A. & Chang, C. Linking agriculture and exchange to social developments of the Central Asian Iron Age. Journal of Anthropological Archaeology 48, 295–308 (2017).

    • Article
    • Google Scholar
  • 76.

    Boserup, E. The impact of population growth on agricultural output. Q. J. Econ. 257–270 (1975).

    • Article
    • Google Scholar
  • 77.

    Kradin, N. N. Nomadism, Evolution and World-Systems: Pastoral Societies in Theories of Historical Development. Journal of World-Systems Research 8, 368–388 (2002).

    • Article
    • Google Scholar
  • 78.

    Johnson, J. A. & Hanks, B. Society, demography and community: reassessing Bronze Age Sintashta populations in the southern Urals, Russia (2100–1700 BC). in Beyond Elites: Alternatives to Hierarchical Systems in Modelling Social Formations vol. 215 355–367 Teil 2. Aus dem Institut für Archäologische Wissenschaften der Universität. (2012).

  • 79.

    Hanks, B. Archaeology of the Eurasian Steppes and Mongolia. Annu. Rev. Anthropol. 39, 469–486 (2010).

    • Article
    • Google Scholar
  • 80.

    Hedges, R. E. M., Clement, J. G., Thomas, C. D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133, 808–816 (2007).

  • 81.

    Hillson, S. Dental Anthropology. Cambridge: Cambridge University Press. (1996).

  • 82.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/ (2013).

  • 83.

    Groß, M. Modeling body height in prehistory using a spatio-temporal Bayesian errors-in variables model. AStA Adv. Stat. Anal. 100, 289–311 (2016).

  • 84.

    Rosenstock, E. et al. Human Stature in the Near East and Europe ca. 10 000 – 1000 BC: its spatio-temporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. (2019).

  • 85.

    Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS One 9, e87436 (2014).

  • 86.

    Fernandes, R. et al. IsoMemo: a Big isotopic Data initiative for archaeology, ecology, and environmental & life sciences. IsoMemo, http://www.isomemo.com (2019).

  • 87.

    Taylor, W. et al. Radiocarbon dating and cultural dynamics across the early pastoral transition in eastern Eurasia. PLoS One (2019).

  • 88.

    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (Orau). Radiocarbon 52, 103–112 (2010).

  • 89.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2019).


  • Source: Ecology - nature.com

    Flash droughts present a new challenge for subseasonal-to-seasonal prediction

    Green gravel: a novel restoration tool to combat kelp forest decline