in

Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India

  • 1.

    Micallef, M. L., D’Agostino, P. M., Al-Sinawi, B., Neilan, B. A. & Moffitt, M. C. Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genomics. 21, 1–12 (2015).

  • 2.

    Carbonell, P. et al. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle. Nat. Prod. Rep. 33, 925–932 (2016).

  • 3.

    Katz, L. & Baltz, R. H. Natural product discovery: Past, present and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016).

  • 4.

    Berdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 65, 385–395 (2012).

  • 5.

    Demain, A. L. Importance of microbial natural products and the need to revitalize their discovery. J. Ind. Microbiol. Biotechnol. 41, 185–201 (2014).

  • 6.

    Guo, X. et al. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl. Environ. Microbiol. 81, 3086–3103 (2015).

  • 7.

    Miao, V. & Davies, J. Actinobacteria: The good, the bad, and the ugly. Anton. Leeuw. 98, 143–150 (2010).

    • Article
    • Google Scholar
  • 8.

    Basnet, D. B. et al. Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC- 2136: cloning, sequencing and characterization. Mol. Cells. 22, 154–62 (2006).

  • 9.

    Hopwood, D. A. Streptomyces in nature and medicine in The antibiotic makers (New York, USA: Oxford University Press, 2007).

  • 10.

    Baltz, R. H. Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 33, 507–513 (2006).

  • 11.

    Simpkin, V. L., Renwick, M. J., Kelly, R. & Mossialos, E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot 70, 1087–1096 (2017).

  • 12.

    Tiwari, K., Upadhyay, D. J., Mosker, E., Sussmuth, R. & Gupta, R. K. Culturable bioactive actinomycetes from the Great Indian Thar Desert. Ann. Microbiol. 65, 1901–1914 (2015).

  • 13.

    Debnath, R. et al. Psychrotolerant antifungal Streptomyces isolated from Tawang, India and the shift in chitinase gene family. Extremophiles. 17, 1045–1059 (2013).

  • 14.

    Manikkam, R., Venugopal, G., Subramaniam, B., Ramasamy, B. & Kumar, V. Bioactive potential of actinomycetes from less explored ecosystems against Mycobacterium tuberculosis and other non-mycobacterial pathogens. Int. Sch. Res. Not. 812974, 1–9 (2014).

    • Google Scholar
  • 15.

    Myers, N., Russel, M. A., Cristina, M. G., Gustavo, A. B. F. & Jennifer., K. Biodiversity hotspots for conservation priorities. Nature. 403, 853–858 (2000).

  • 16.

    Glover, J. B. Applications of fungal ecology in the search of new bioactive natural products. In The Mycota IV: Environmental, Microbial Relationships (eds. Wicklow, D. T.) 249–268 (Berlin Heidelberg: Springer-Verlag, 1995).

  • 17.

    Strobel, G., Daisy, B., Castillo, U. & Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 67, 257–268 (2004).

  • 18.

    Kim, H., Lee, J.-Y. & Lee, K.-K. Thermal characteristics and bacterial diversity of forest soil in the Haean Basin of Korea. Sci. World J. 2014, 247401 (2014).

    • Google Scholar
  • 19.

    Thakur, D., Yadav, A., Gogoi, B. K. & Bora, T. C. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J. Med Mycol. 17, 242–249 (2007).

    • Article
    • Google Scholar
  • 20.

    Talukdar, M. et al. Bioprospecting Micromonospora from Kaziranga National Park of India and their anti- infective potential. World. J. Microbiol. Biotechnol. 28, 2703–2712 (2012).

  • 21.

    Sharma, P., Das, R., Kalita, M. C. & Thakur, D. Investigation of extracellular antifungal proteinaceous compound produced by Streptomyces sp. 5K10. Afr. J. Microbiol. Res. 8, 986–993 (2014).

  • 22.

    Gohain, A. et al. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants. FEMS Microbiol. Lett. 362, fnv158 (2015).

  • 23.

    Passari, A. K., Mishra, V. K., Saikia, R., Gupta, V. K. & Singh, B. P. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front. Microbiol. 6, 273 (2015).

  • 24.

    Sharma, P., Kalita, M. C. & Thakur, D. Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Front. Microbiol. 7, 347 (2016).

  • 25.

    Passari, A. K. et al. Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci. Rep. 7, 11809 (2017).

  • 26.

    Das, R., Romi, W., Das, R., Sharma, H. K. & Thakur, D. Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 18, 71 (2018).

  • 27.

    Omura, S. et al. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc. Nat. Acad. Sci. 98, 12215–12220 (2001).

  • 28.

    Berdy, J. Bioactive microbial metabolites: a personal view. J. Antibiot. 58, 1–26 (2005).

  • 29.

    Medema et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

  • 30.

    Lami, N. & Osada, H. Screening of biologically active secondary metabolites from Zairian (Africa). microorganisms. RIKEN. Review. 3, 15–16 (1993).

    • CAS
    • Google Scholar
  • 31.

    Onifade, A. K. Preliminary studies on the bioactivity of secondary metabolites from Aureobasidium pullulans and Emericela regulosa. J. Anim. Vet. Adv. 5, 930–934 (2006).

    • CAS
    • Google Scholar
  • 32.

    Golinska, P. & Dahm, H. Occurrence of actinomycetes in forest soil. Dendrobiol. 66, 3–13 (2011).

    • CAS
    • Google Scholar
  • 33.

    Seong, C. N., Choi, J. H. & Baik, K.-S. An improved selective isolation of rare actinomycetes from forest soil. J. Microbiol. 39, 17–23 (2001).

    • Google Scholar
  • 34.

    Sripreechasak, P. et al. Streptomyces siamensis sp. nov., and Streptomyces similanensis sp. nov., isolated from Thai soils. J. Antibiot. 6, 633–640 (2013).

  • 35.

    Pridham, T. G. & Tresner, H. D. Family VII. Streptomycetaceae. In Bergey’s Manual of Determinative Bacteriology (eds. Buchanan, R. E. & Gibbons, W. E.) 747–748 (Baltimore: Williams & Wilkins, 1974).

  • 36.

    Arai, T. & Mikami, Y. Chromogenicity of Streptomyces. Appl. Microbiol. 23, 402–406 (1972).

  • 37.

    Jadoon, W. A., Nakai, R. & Naganuma, T. Biogeographical note on Antarctic microflorae: Endemism and cosmopolitanism. Geosci. Frontiers. 4, 633–646 (2012).

  • 38.

    Li, J., Dong, J. D., Yang, J., Luo, X. M. & Zhang, S. Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral associated actinomycetes. Anton. Leeuw. Int. J. 106, 623–635 (2014).

  • 39.

    Riquelme, C. et al. Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Front. Microbiol. 6, 1342 (2015).

  • 40.

    Vicente, M. F., Basilio, A., Cabello, A. & Pelaez, F. Microbial natural products as a source of antifungals. Clin. Microbiol. Infect. 9, 15–32 (2003).

  • 41.

    Ramesh, S. & Mathivanan, N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J. Microbiol. Biotechnol. 25, 2103–2111 (2009).

  • 42.

    Meena, B., Rajan, L. A., Vinithkumar, N. V. & Kirubagaran, R. Novel marine actinobacteria from emerald Andaman & Nicobar Islands: A prospective source for industrial and pharmaceutical by-products. BMC Microbiol. 13, 145 (2013).

  • 43.

    Mitra, A., Santra, S. C. & Mukherjee, J. Distribution of actinomycetes, their antagonistic behaviour and the physic-chemical characteristics of the world’s largest tidal mangrove forest. Appl. Microbiol. Biotechnol. 80, 685–695 (2008).

  • 44.

    Chanthasena, P. & Nantapong, N. Biodiversity of antimicrobial-producing actinomycetes strains isolated from dry dipterocarp forest soil in northeast Thailand. Braz. Arch. Biol. Technol. 59, e16150674 (2016).

  • 45.

    Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

  • 46.

    Lee, L.-H. et al. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci. World J. 2014, 1–14 (2014).

    • Google Scholar
  • 47.

    Hornung, A., Bertazzo, M., Dziarnowski, A., Schneider, K. & Welzel, K. A genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chem. Bio. Chem. 8, 757–766 (2007).

  • 48.

    Qin, S. et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl. Environ. Microb. 75, 6176–6186 (2009).

  • 49.

    Liu, L. et al. Diversity of culturable thermophilic actinobacteria in hot springs in Tengchong, China and studies of their biosynthetic gene profiles. Microb. Ecol. 72, 150–162 (2016).

  • 50.

    Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 417, 141–147 (2002).

  • 51.

    Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).

  • 52.

    Doroghazi, J. R. & Metcalf, W. W. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics. 14, 611–623 (2013).

  • 53.

    Challis, G. L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiol. 154, 1555–1569 (2008).

  • 54.

    Ichikawa, N. et al. DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 41, D408–D414 (2013).

  • 55.

    Gontang, E. A., Gaudencio, S. P., Fenical, W. & Jensen, P. R. Sequence based analysis of secondary-metabolite biosynthesis in marine actinobacteria. Appl. Environ. Microbiol. 76, 2487–2499 (2010).

  • 56.

    Hodges, T. W., Slattery, M. & Olson, J. B. Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters. Mar. Biotechnol. 14, 270–280 (2012).

  • 57.

    Haydock, S. F. et al. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449. Microbiol. 151, 3161–3169 (2005).

  • 58.

    Ju, J. et al. Functional characterization of ttmM unveils new tautomycin analogs and insight into tautomycin biosynthesis and activity. Org. Lett. 11, 1639–1642 (2009).

  • 59.

    Decker, H. & Haag, S. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J. Bacteriol. 177, 6126–6136 (1995).

  • 60.

    Xu, Z., Jakobi, K., Welzel, K. & Hertweck, C. Biosynthesis of the antitumor agent chartreusin involves the oxidative rearrangement of an anthracyclic polyketide. Chem. Biol. 12, 579–588 (2005).

  • 61.

    Namwat, W., Kamioka, Y., Kinoshita, H., Yamada, Y. & Nihira, T. Characterization of virginiamycin S biosynthetic genes from Streptomyces virginiae. Gene. 286, 283–90 (2002).

  • 62.

    Zhao, C. et al. Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an “acyltransferase-less” type I polyketide synthase that incorporates two distinct extender units. J. Biol. Chem. 285, 20097–20108 (2010).

  • 63.

    Cook, A. E. & Meyers, P. R. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int. J. Syst. Evol. Microbiol. 53, 1907–1915 (2003).

  • 64.

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 405, 299–304 (2000).

  • 65.

    Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 288, 1251–1254 (2000).

  • 66.

    McArthur, J. V., Kovacic, D. A. & Smith, M. H. Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc. Natl. Acad. Sci. 85, 9621–9624 (1988).

  • 67.

    Davelos, A. L., Xiao, K., Samac, D. A., Martin, A. P. & Kinkel, L. L. Spatial variation in Streptomyces genetic composition and diversity in a Prairie soil. Microb. Ecol. 448, 601–612 (2004).

  • 68.

    Gurtler, V., Wilson, V. A. & Mayall, B. C. Classification of medically important Clostridia using restriction endonuclease site differences of PCR amplified 16S rDNA. J. Gen. Microbiol. 137, 2673–2679 (1991).

  • 69.

    Kohler, G., Ludwig, W. & Schleifer, K. H. Differentiation of lactococci by rRNA gene restriction analysis. FEMS Microbiol. Lett. 84, 307–312 (1991).

    • Article
    • Google Scholar
  • 70.

    Hop, D. V. et al. Taxonomic and ecological studies of actinomycetes from Vietnam: isolation and genus- level diversity. J. Antibiot. 64, 599–606 (2011).

  • 71.

    Ding, D. et al. Culturable actinomycetes from desert ecosystem in northeast of Qinghai-Tibet Plateau. Ann Microbiol 63, 259–266 (2012).

  • 72.

    Oskay, M., Tamer, A. U. & Azeri, C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr. J. Biotechnol. 3, 441–446 (2004).

    • Article
    • Google Scholar
  • 73.

    Kumar, P. S. et al. In vitro antimicrobial, antioxidant and cytotoxic properties of Streptomyces lavendulae strain SCA5. BMC Microbiol. 14, 291–302 (2014).

  • 74.

    Al-Tai, A., Kim, B., Kim, S. B., Manfio, G. P. & Goodfellow, M. Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int. J. Syst. Evol. Microbiol. 49, 1395–1402 (1999).

    • CAS
    • Google Scholar
  • 75.

    Li, W. et al. Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. Pest Manag. Sci. 64, 1294–1302 (2008).

  • 76.

    Cheng, J. et al. Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil. J. Korean Soc. Appl. Biol. Chem. 53, 545–552 (2010).

  • 77.

    Supaphon, P., Phongpaichit, S., Rukachaisirikul, V. & Sakayaroj, J. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodoceaserrulata, Halophilaovalis and Thalassiahemprichii. PLoS ONE 8, 72520 (2013).

  • 78.

    Nurkanto, A. & Julistiono, H. Screening and study of antifungal activity of leaf litter actinomycetes isolated from Ternate Island, Indonesia. Asian Pac. J. Trop. Med. 7, S238–S243 (2014).

    • Article
    • Google Scholar
  • 79.

    Ser, H. et al. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol. 6, 854 (2015).

  • 80.

    Ser, H. et al. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia. Front. Microbiol. 6, 1398 (2015).

  • 81.

    Teng_hern et al. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front. Microbiol. 6, 1316 (2015).

    • Google Scholar
  • 82.

    Yogeswari, S., Ramalakshmi, S., Neelavathy, R. & Muthumary, J. Identification and comparative studies of different volatile fractions from Monochaetia kansensis by GCMS. Global J. Pharmacol. 6, 65–71 (2012).

    • Google Scholar
  • 83.

    Balachandran, C., Duraipandiyan, V., Balakrishna, K. & Ignacimuthu, S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour. Technol. 112, 83–90 (2012).

  • 84.

    Kumar, P. S., Duraipandiyan, V. & Ignacimuthu, S. Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung J. Med. Sci. 30, 435–446 (2014).

    • Article
    • Google Scholar
  • 85.

    Dashti, Y., Grkovic, T., Abdelmohsen, U. R., Hentschel, U. & Quinn, R. J. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Mar. Drugs. 12, 3046–3059 (2014).

  • 86.

    Devi, N. N. & Wahab, F. Antimicrobial properties of endophytic fungi isolated from medicinal plant Camellia sinesis. Int. J. Pharma. Bio. Sci. 3, 420–427 (2012).

    • CAS
    • Google Scholar
  • 87.

    Okwu, D. E. & Ighodaro, B. U. GC-MS evaluation of bioactive compounds and antibacterial activity of the oil fraction from the leaves of Alstonia boonei De Wild. Der. Pharma. Chemica. 2, 261–272 (2010).

    • CAS
    • Google Scholar
  • 88.

    Natarajan, V. & Dhas, A. S. A. G. Phytochemical composition and in vitro antimicrobial, antioxidant activities of ethanolic extract of Leptadenia reticulata [W&A] leaves. Middle East J. Sci. Res. 21, 1698–1705 (2014).

    • CAS
    • Google Scholar
  • 89.

    Cao, G., Xu, Z., Wu, X., Li, Q. & Chen, X. Capture and identification of the volatile components in crude and processed herbal medicines through on-line purge and trap technique coupled with GC × GC-TOF MS. Nat. Prod. Res. 28, 1607–12 (2014).

  • 90.

    Manilal, A., Sujith, S., Selvin, J., Shakir, C. & Kiran, G. S. Antibacterial activity of Falkenbergia hillebrandii (Born) from the Indian coast against human pathogens. Int. J. Expt. Botany. 78, 161–166 (2009).

    • Google Scholar
  • 91.

    Hussain, A. Z. & Kumaresan, S. GC-MS studies and phytochemical screening of Sesbania grandiflora L. J. Chem. Pharm. Res. 6, 43–47 (2014).

    • Google Scholar
  • 92.

    Niku‐Paavola, M. ‐L., Laitila, A., Mattila‐Sandholm, T. & Haikara, A. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86, 29–35 (1999).

  • 93.

    Musthafa, K. S., Balamurugan, K., Pandian, S. K. & Ravi, A. V. 2,5-piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J. Basic Microbiol. 52, 679–686 (2012).

  • 94.

    Jain, V. K., Jain, B., Sharma, U. K. & Saha, D. Synthesis, characterization and antimicrobial screening of some 4-substituted-1-(4-substituted phenyl) piperazine derivatives. Int. J. Curr. Pharma. Res. 3, 1–5 (2011).

    • Google Scholar
  • 95.

    Jadhav, R. P., Raundal, H. N., Patil, A. A. & Bobade, V. D. Synthesis and biological evaluation of a series of1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J. Saudi Chem. Soc. 21, 152–159 (2017).

  • 96.

    Shirling, E. B. & Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340 (1966).

    • Article
    • Google Scholar
  • 97.

    Zhao, H., Parry, R. L., Ellis, D. I., Griffith, G. W. & Goodacre, R. The rapid differentiation of Streptomyces isolates using fourier transform infrared spectroscopy. Vib. Spectrosc. 40, 213–218 (2006).

  • 98.

    Shomurat, T., Yoshida, J., Amano, S., Kojina, M. & Niida, T. Studies on Actinomycetales producing antibiotics only in agar culture. I. Screening taxonomy and morphology-productivity relationship of Streptomyces halstedii strain SF-1993. J. Antibiot. 32, 427–435 (1979).

    • Article
    • Google Scholar
  • 99.

    Grammer, A. Antibiotic sensitivity and assay test in Microbiological Methods. (eds. Collins, C. H. & Lyne, P. N.) 235 (Butterworths, London, 1976).

  • 100.

    Chu, W.-H. Optimization of extracellular alkaline protease production from species of Bacillus. J. Ind. Microbiol. Biotechnol. 34, 241–245 (2007).

  • 101.

    Kar, S., Datta, T. K. & Ray, R. C. Optimization of Thermostable α- Amylase production by Streptomyces erumpens MTCC 7317 in solid-state fermentation using cassava fibrous residue. Braz. Arch. Biol. Technol. 53, 301–309 (2010).

  • 102.

    Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57, 503–507 (2008).

  • 103.

    Kumar, D. et al. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch. Appl. Sci. Res. 4, 1763–1770 (2012).

    • CAS
    • Google Scholar
  • 104.

    Ayuso-Sacido, A. & Genilloud, O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49, 10–24 (2005).

  • 105.

    Metsa-Ketela, M. et al. An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol. Lett. 180, 1–6 (1999).

  • 106.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

  • 107.

    Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

  • 108.

    Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K. & De Vos, P. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J. Microbiol. Methods. 26, 247–259 (1996).

  • 109.

    Jose, P. A. & Jebakumar, S. R. D. Phylogenetic appraisal of antagonistic, slow growing actinomycetes isolated from hypersaline inland solar salterns at Sambhar salt Lake, India. Front. Microbiol. 4, 190 (2015).

    • Google Scholar
  • 110.

    Nimaichand, S., Devi, A. M., Tamreihao, K., Ningthoujam, D. S. & Li, W.-J. Actinobacterial diversity in limestone deposit sites in Hundung, Manipur (India) and their antimicrobial activities. Front. Microbiol. 6, 413 (2015).

  • 111.

    Rohlf, F. J. NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.02. (ed. New York, USA: Exeter Software, Setauket, 1998).

  • 112.

    Chun, J. et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261 (2007).

  • 113.

    Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

  • 114.

    Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39, 783–791 (1985).

  • 115.

    Clinical and Laboratory Standards Institute (CLSI) in Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement (M100-S22; Wayne, PA: CLSI, 2012).

  • 116.

    Andrews, M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16 (2001).

  • 117.

    Gomez, K. A., & Gomez, A. A. A statistical procedure for agricultural research (ed. New York, USA: John Willy and Sons, 1984).

  • 118.

    Martin, B. et al. VENNTUREA novel Venn diagram investigational tool for multiple pharmacological dataset analysis. PLoS ONE. 7, 1–17 (2012).

    • Google Scholar
  • 119.

    Jia, X. Y. et al. Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem. Biol. 13, 575–85 (2006).

  • 120.

    Liu, T., Lin, X., Zhou, X., Deng, Z. & Cane, D. E. Mechanism of thioesterase-catalyzed chain release in the biosynthesis of the polyether antibiotic nanchangmycin. Chem. Biol. 15, 449–458 (2008).

  • 121.

    Sun, Y. et al. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem. Biol. 10, 431–441 (2003).

  • 122.

    August, P. R. et al. Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 5, 69–79 (1998).

  • 123.

    Sianidis, G. et al. Cloning, purification and characterization of a functional anthracycline glycosyltransferase. J. Biotechnol. 125, 425–33 (2006).

  • 124.

    Sherman, D. H. et al. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 8, 2717–25 (1989).

  • 125.

    Brünker, P., McKinney, K., Sterner, O., Minas, W. & Bailey, J. E. Isolation and characterization of the naphthocyclinone gene cluster from Streptomyces arenae DSM 40737 and heterologous expression of the polyketide synthase genes. Gene. 227, 125–135 (1999).

  • 126.

    Fernández-Moreno, M. A., Martínez, E., Boto, L., Hopwood, D. A. & Malpartida, F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J. Biol. Chem267, 19278–19290 (1992).

  • 127.

    Lombó, F., Blanco, G., Fernández, E., Méndez, C. & Salas, J. A. Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene172, 87–91 (1996).

  • 128.

    Kharel, M. K. et al. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat. Prod. Rep. 29, 264–325 (2012).

  • 129.

    Ichinose, K., Ozawa, M., Itou, K., Kunieda, K. & Ebizuka, Y. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiol. 149, 1633–1645 (2003).

  • 130.

    Oja, T. et al. Characterization of the alnumycin gene cluster reveals unusual gene products for pyran ring formation and dioxan biosynthesis. Chem. Biol. 15, 1046–1057 (2008).

  • 131.

    Torkkell, S., Ylihonko, K., Hakala, J., Skurnik, M. & Mäntsälä, P. Characterization of Streptomyces nogalater genes encoding enzymes involved in glycosylation steps in nogalamycin biosynthesis. Mol. Gen. Genet. 256, 203–209 (1997).

  • 132.

    Luzhetskyy, A. et al. Function of lanGT3, a glycosyltransferase gene involved in landomycin A biosynthesis. Chembiochem5, 1567–1570 (2004).

  • 133.

    Brünke, P., Sterner, O., Bailey, J. E. & Minas, W. Heterologous expression of the naphthocyclinone hydroxylase gene from Streptomyces arenae for production of novel hybrid polyketides. Anton. Leeuw79, 235–245 (2001).

  • 134.

    Marti, T., Hu, Z., Pohl, N. L., Shah, A. N. & Khosla, C. Cloning, nucleotide sequence, and heterologous expression of the biosynthetic gene cluster for R1128, a non-steroidal estrogen receptor antagonist. Insights into an unusual priming mechanism. J. Biol. Chem275,33443–33448 (2000).

  • 135.

    Han, L., Yang, K., Ramalingam, E., Mosher, R. H. & Vining, L. C. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiol140,3379–3389 (1994).

  • 136.

    Das, A., Szu, P. H., Fitzgerald, J. T. & Khosla, C. Mechanism and engineering of polyketide chain initiation in fredericamycin biosynthesis. J. Am. Chem. Soc132, 8831–8833 (2010).

  • 137.

    Lackner, G. et al. Biosynthesis of pentangular polyphenols: deductions from the benastatin and griseorhodin pathways. J. Am. Chem. Soc129, 9306–9312 (2007).

  • 138.

    Lee, C. K., Kamitani, Y., Nihira, T. & Yamada, Y. Identification and in vivo functional analysis of a virginiamycin S resistance gene (varS) from Streptomyces virginiaeJ. Bacteriol181,3293–3297 (1999).

  • 139.

    Zhao, C. et al. Utilization of the methoxymalonyl-acyl carrier protein biosynthesis locus for cloning the oxazolomycin biosynthetic gene cluster from Streptomyces albus JA3453. J. Bacteriol188, 4142–4147 (2006).

  • 140.

    Narasaiah, B. C. et al. Isolation and structural confirmation of bioactive compounds produced by the strain Streptomyces albus CN-4. IOSR. J. Pharm. Biol. Sci. 9, 49–54 (2014).


  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps