in

Evidence of trans-generational developmental modifications induced by simulated heat waves in an arthropod

  • 1.

    Angilletta, M. J. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, UK (2009).

    • Google Scholar
  • 2.

    Gienapp, P., Teplitsky, C., Alho, J., Mills, A. & Merilä, J. Climatic change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

  • 3.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

  • 4.

    Sanchez-Guillen, R. A., Cordoba-Aguilar, A., Hansson, B., Ott, J. & Wellenreuther, M. Evolutionary consequences of climate-induced range-shifts in insects. Biol. Rev. 91, 1050–1064 (2016).

  • 5.

    Schilthuizen, M. & Kellermann, V. Contemporary climate change and terrestrial invertebrates: evolutionary versus plastic changes. Evol. Appl. 7, 56–67 (2014).

  • 6.

    Schilthuizen, M. & Kellermann, V. Terrestrial insects and climate change: adaptive responses in key traits. Physiol. Entomol. 44, 99–115 (2019).

    • Article
    • Google Scholar
  • 7.

    Kristensen, T. N., Ketola, T. & Kronholm, I. Adaptation to environmental stress at different timescales. Ann. NY Acad. Sci. 1422, 1–18 (2018).

    • Article
    • Google Scholar
  • 8.

    Bonduriansky, R., Crean, A. J. & Day, T. The implications of nongenetic inheritance for evolution in changing environments. Evol. Appl. 5, 192–201 (2012).

  • 9.

    Esperk, T., Kjaersgaard, A., Walters, R. J., Berger, D. & Blanckenhorn, W. U. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? J. Evol. Biol. 29, 900–915 (2016).

  • 10.

    Sentis, A., Hemptinne, J. L. & Brodeur, J. Non-additive effects of simulated heat waves and predators on prey phenotype and transgenerational phenotypic plasticity. Global Change Biol. 23, 4598–4608 (2017).

  • 11.

    Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).

    • Article
    • Google Scholar
  • 12.

    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. Roy. Soc. B: Biol. Sci. 281, 20132612 (2014).

    • Article
    • Google Scholar
  • 13.

    Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biol. 24, 13–34 (2017).

  • 14.

    Nylin, S. & Gotthard, K. Plasticity in life-history traits. Annu. Rev. Entomol. 43, 63–83 (1998).

  • 15.

    Kielland, O. N., Bech, C. & Einum, S. No evidence for thermal transgenerational plasticity in metabolism when minimizing the potential for confounding effects. Proc. Roy. Soc. B: Biol. Sci. 284, 20162494 (2017).

    • Article
    • Google Scholar
  • 16.

    Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).

    • Article
    • Google Scholar
  • 17.

    Jeffs, C. T. & Leather, S. R. Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 150, 240–249 (2014).

    • Article
    • Google Scholar
  • 18.

    Margolies, D. C. & Wrensch, D. L. Temperature-induced changes in spider mite fitness: offsetting effects of development time, fecundity, and sex ratio. Entomol. Exp. Appl. 78, 111–118 (1996).

    • Article
    • Google Scholar
  • 19.

    Zizzari, Z. V. & Ellers, J. Rapid shift in thermal resistance between generations through maternal heat exposure. Oikos 123, 1365–1370 (2014).

    • Article
    • Google Scholar
  • 20.

    Moraes, G. J., Mesa, N. C., Braun, A. & Melo, E. L. Definition of the Amblyseius limonicus species group (Acari: Phytoseiidae), with descriptions of two new species and new records. Int. J. Acarol. 20, 209–217 (1994).

    • Article
    • Google Scholar
  • 21.

    Schuster, R. O. & Pritchard, A. E. Phytoseiid mites of California. Hilgardia 34, 191–285 (1963).

    • Article
    • Google Scholar
  • 22.

    Sabelis, M. W. & Dicke, M. Long-range dispersal and searching behavior. In: Helle, W. & Sabelis, M. W. (Eds.). Spider mites. Their biology, natural enemies and control. Volume 1B, pp 141–160. Elsevier Science Publishers B.V., Amsterdam, The Netherlands (1985).

  • 23.

    Walzer, A. & Schausberger, P. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol. J. Linn. Soc. 102, 650–660 (2011).

    • Article
    • Google Scholar
  • 24.

    Walzer, A. & Schausberger, P. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites. PLoS One 8, e79089 (2013).

  • 25.

    Walzer, A. & Schausberger, P. Food stress causes sex-specific maternal effects in mites. J. Exp. Biol. 218, 2603–2609 (2015).

  • 26.

    Zhang, G.-H. et al. Effects of heat stress on copulation, fecundity and longevity of newly-emerged adults of the predatory mite, Neoseiulus barkeri (Acari: Phytoseiidae). Syst. Appl. Acarol. 21, 295–306 (2016).

    • Google Scholar
  • 27.

    Walzer, A. & Schausberger, P. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk. Exp. Appl. Acarol. 60, 95–115 (2013).

  • 28.

    Walzer, A., Lepp, N. & Schausberger, P. Compensatory growth following transient intraguild predation risk in predatory mites. Oikos 124, 603–609 (2015).

  • 29.

    Uller, T., Nakagawa, S. & English, S. Weak evidence for anticipatory parental effects in plants and animals. J. Evol. Biol. 26(2161–2170), 1 (2013).

    • Google Scholar
  • 30.

    Dos Santos, V. & Tixier, M.-S. Molecular markers for analyzing phylogenetic relationships within the mite family Phytoseiidae (Acari: Mesostigmata). Cladistics 28, 1–17 (2016).

    • Google Scholar
  • 31.

    Kanouh, M., Tixier, M. S., Guichou, S., Cheval, B. & Kreiter, S. Two synonymy cases within the genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident? Biol. J. Linn. Soc. 101, 323–344 (2010).

    • Article
    • Google Scholar
  • 32.

    Tixier, M.-S., Okassa, M. & Kreiter, S. An integrative morphological and molecular diagnostics for Typhlodromus pyri (Acari: Phytoseiidae). Zool. Scr. 41, 68–78 (2012).

    • Article
    • Google Scholar
  • 33.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

  • 34.

    Tixier, M.-S., Dos Santos, V., Douin, M., Duso, C. & Kreiter, S. Great molecular variation questions the status of the species Phytoseius finitimus (Acari: Phytoseiidae) and the barcoding decision diagnosis. Acarologia 57, 493–515 (2017).

    • Google Scholar
  • 35.

    Haylock, M. R. et al. A European daily high‐resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008).

  • 36.

    Huth, R., Kysely, J. & Pokorna, L. A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim. Change 46, 29–60 (2000).

    • Article
    • Google Scholar
  • 37.

    Liu, J.-F. & Zhang, Z.-Q. Development, survival and reproduction of a New Zealand strain of Amblydromalus limonicus (Acari: Phytoseiidae) on Typha orientalis pollen, Ephestia kuehniella eggs, and an artificial diet. Int. J. Acarol. 43, 1–7 (2017).

    • Article
    • Google Scholar
  • 38.

    Walzer, A. & Schausberger, P. Threat-sensitive anti-intraguild predation behavior: maternal strategies to reduce offspring predation risk in mites. Anim. Behav. 81, 177–184 (2011).

  • 39.

    Krantz, G. W. & Walter, D. E. A Manual of Acarology. 3nd Edition. Texas Tech University Press, USA (2009).

  • 40.

    Christian, A. & Karg, W. A. A revised setal nomenclature based on ontogenetic and phylogenetic characters and universally applicable to the idiosoma of Gamasina (Acari, Parasitiformes). Soil Org. 80, 45–79 (2008).

    • Google Scholar
  • 41.

    Escudero-Colomar, L. A., Creus, E., Chorazy, A. & Walzer, A. Intraguild aggressiveness between an alien and a native predatory mite. Syst. Appl. Acarol. 24, 2094–2105 (2019).

    • Google Scholar
  • 42.

    IBM Corp. IBM SPSS Statistics for Windows, Version 24.0. IBM Corp, Armonk, NY (2016).

  • 43.

    Roff, D. A. Age and size at maturity. In: Fox, C. W., Roff, D. A. & Fairbairn, D. J., eds. Evolutionary ecology: concepts and case studies, pp 99–112. Oxford: Oxford University Press, UK (2001).

  • 44.

    Walzer, A., Dittmann, L. & Schausberger, P. Comparison of three Amblydromalus limonicus populations regarding their potential to overcome abiotic resistance of Austrian ecosystems under climate warming scenarios. IOBC-WPRS Bull. 120, 85–86 (2016).

    • Google Scholar
  • 45.

    Petravy, G., David, J. R., Gilbert, P. & Moreteau, B. Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes. J. Thermal Biol. 26, 29–39 (2001).

    • Article
    • Google Scholar
  • 46.

    Chen, C.-Y., Chiu, M.-C. & Kuo, M.-H. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora. Bull. Entomol. Res. 103, 406–413 (2013).

  • 47.

    Xing, K., Ma, C.-S. & Han, J.-C. Effects of large temperature fluctuations on hatching and subsequent development of the diamondback moth (Lepidoptera: Plutellidae). Flo. Entomol. 98, 651–659 (2015).

    • Article
    • Google Scholar
  • 48.

    Chidawanyika, F., Nyamukondiwa, C., Strathie, L. & Fischer, K. Effects of thermal regimes, starvation and age on heat tolerance of the parthenuim beetle Zygogramma bicolorata (Coleroperta: Chrysomelidae) following dynamic and static protocols. PLos ONE 12, e0169371 (2017).

  • 49.

    Maderia, C., Leal, M. C., Diniz, M. S., Cabral, H. N. & Vinagre, C. Thermal stress and energy metabolism in two circumtropical decapod crustaceans: responses to acute temperature events. Mar. Environ. Res. 141, 148–158 (2018).

  • 50.

    Atkinson, D. Temperature and organism size – a biological law for ectotherms? Adv. Ecol. Res. 25, 1–58 (1994).

    • Article
    • Google Scholar
  • 51.

    Angilletta, M. J. & Dunham, A. E. The temperature‐size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).

  • 52.

    Peters, R. H. The ecological implications of body size. Cambridge University Press, UK (1983).

  • 53.

    Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).

  • 54.

    Roff, D. A. The evolution of life histories: theory and analysis. Chapman & Hall, New York, USA (1992).

  • 55.

    Stearns, S. C. The evolution of life histories. Oxford University Press, Oxford, UK (1992).

  • 56.

    Bonduriansky, R. & Crean, A. J. What are condition-transfer effects and how can they be detected? Methods. Ecol. Evol. 9, 450–456 (2018).

    • Google Scholar
  • 57.

    Engqvist, L. & Reinhold, K. Adaptive parental effects and how to estimate them: A comment to Bondurianski and Crean. Methods Ecol. Evol. 9, 457–459 (2018).

    • Article
    • Google Scholar
  • 58.

    Engqvist, L. & Reinhold, K. Adaptive trans-generational phenotypic plasticity and the lack of an experimental control in reciprocal match/mismatch experiments. Methods Ecol. Evol. 7, 1482–1488 (2016).

    • Article
    • Google Scholar
  • 59.

    Zuo, W., Moses, M. E., West, G. B., Hou, C. & Brown, J. H. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc. Roy. Soc. B: Biol. Sci. 279, 1840–1846 (2012).

    • Article
    • Google Scholar
  • 60.

    Kingsolver, J. G., Massie, K. R., Ragland, G. J. & Smith, M. H. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule. J. Evol. Biol. 20, 892–900 (2007).

  • 61.

    Porter, W. & Kearney, M. Size, shape and the thermal niche of endotherms. Proc. Natl. Acad. Sci. USA 106, 19666–19672 (2009).

  • 62.

    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

  • 63.

    McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Letters 6, 253–256 (2010).

    • Article
    • Google Scholar
  • 64.

    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).

  • 65.

    Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biol. 21, 1092–1102 (2015).

  • 66.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–292 (2011).

  • 67.

    Walters, R. & Hassall, M. The temperature-size rule in ectotherms: may a general explanation exist after all? Am. Nat. 167, 510–523 (2006).

  • 68.

    Fu, D. M., He, H.-M., Zou, C., Xiao, H.-J. & Xue, F.-S. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: breaking the temperature-size rule. J. Thermal Biol. 61, 115–118 (2016).

    • Article
    • Google Scholar
  • 69.

    Burgess, S. C. & Marshall, D. J. Temperature-induced maternal effects and environmentally predictability. J. Exp. Biol. 214, 2329–2336 (2011).

  • 70.

    Ozder, N. Development and fecundity of Sitobion avenae on some wheat cultivars under laboratory conditions. Phytoparasitica 30, 434–436 (2002).

    • Article
    • Google Scholar
  • 71.

    Berrigan, D. & Scheiner, S. M. Modeling the evolution of phenotypic plasticity. In: DeWitt, T. J. & Scheiner, S. M. (Eds.), Phenotypic plasticity. Functional and conceptual approaches (pp 82–93). Oxford University Press, UK (2004).

  • 72.

    Marshall, D. J. & Uller, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).

    • Article
    • Google Scholar
  • 73.

    Herman, J. J., Spencer, H. G., Donohue, K. & Sultan, S. E. How stable should epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68, 632–643 (2013).

  • 74.

    Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23, 432–438 (2008).

  • 75.

    Fischer, K., Klockmann, M. & Reim, E. Strong negative effects of simulated heat waves in a tropical butterfly. J. Exp. Biol. 217, 2892–2898 (2014).


  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps