in

Two-step extinction of Late Cretaceous marine vertebrates in northern Gulf of Mexico prolonged biodiversity loss prior to the Chicxulub impact

  • 1.

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503, https://doi.org/10.1126/science.215.4539.1501 (1982).

  • 2.

    Raup, D. M. Extinction: Bad Genes or Bad Luck? W. W. Norton & Company. 224 p. (1991a).

  • 3.

    Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace–key metazoan radiations. Palaeontology 50, 1–22, https://doi.org/10.1111/j.1475-4983.2006.00611.x (2007).

    • Article
    • Google Scholar
  • 4.

    Bardet, N. Extinction events among Mesozoic marine reptiles. Hist. Biol. 7, 313–324, https://doi.org/10.1080/10292389409380462 (1994).

    • Article
    • Google Scholar
  • 5.

    Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277, 1675–1683, https://doi.org/10.1098/rspb.2009.2177 (2010).

  • 6.

    Benson, R. B. J., Butler, R. J., Lindgren, J. & Smith, A. S. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proc. R. Soc. B 277, 829–834, https://doi.org/10.1098/rspb.2009.1845 (2009).

  • 7.

    Polcyn, M., Jacobs, L. L., Araujo, R., Schulp, A. S. & Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 17–27, https://doi.org/10.1016/j.palaeo.2013.05.018 (2014).

    • Article
    • Google Scholar
  • 8.

    Fischer, V., Bardet, N., Benson, R. B. J., Arkhangelsky, M. S. & Friedman, M. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility. Nat. Commun. 7, 10825, https://doi.org/10.1038/ncomms10825 (2016).

  • 9.

    Gallagher, W. B. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain. Geology 19, 967–970, https://doi.org/10.1130/0091-7613(1991)019<0967:SEASAT>2.3.CO2 (1991).

  • 10.

    Belben, R. A., Underwood, C. J., Johanson, Z. & Twitchett, R. J. Ecological impact of the end-Cretaceous extinction on lamniform sharks. PLoS ONE 12(6), e0178294, https://doi.org/10.1371/journal.pone.0178294 (2017).

  • 11.

    Bazzi, M., Kear, B. P., Blom, H., Ahlberg, E. & Campione, N. E. Static dental disparity and morphological turnover in sharks across the end-Cretaceous mass extinction. Curr. Biolo. 28, 2607–2615.e3, https://doi.org/10.1016/j.cub.2018.05.093 (2018).

  • 12.

    Ikejiri, T., Ebersole, J., Blewitt, H. L. & Ebersole, S. An overview of Late Cretaceous vertebrates from Alabama. Ala. Mus. Nat. Hist. Bull. 31(1), 46–71 (2013).

    • Google Scholar
  • 13.

    Mancini, E. A., Puckett, T. M., Tew, B. H. & Smith, C. C. Upper Cretaceous sequence stratigraphy of the Mississippi – Alabama area. Gulf Coast. Assoc. Geolo. Soc. Trans. 45, 377–384 (1995).

    • Google Scholar
  • 14.

    Ebersole, J. A. & Dean, L. The history of Late Cretaceous vertebrate research in Alabama. Ala. Mus. Nat. Hist. Bull. 31(1), 3–45 (2013).

    • Google Scholar
  • 15.

    Ikejiri, T. & Everhart, M. J. Notes on the Authorship and Holotype of Ptychodus mortoni (Chondrichthyes, Ptychodontidae). N. Mexico Mus. Nat. Sci. Bull. 67, 69–73 (2015).

    • Google Scholar
  • 16.

    Jablonski, D. Survival without recovery after mass extinctions. Proc. Natl. Acad. Sci. USA 99, 8139–8144, https://doi.org/10.1073/pnas.102163299 (2002).

  • 17.

    Alroy, J. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53, 1211–1235, https://doi.org/10.1111/j.1475-4983.2010.01011.x (2010a).

    • Article
    • Google Scholar
  • 18.

    Foote, M. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26 (sp4) 74–102, https://doi.org/10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO2 (2000).

  • 19.

    Foote, M. & Miller, A. I. Principles of Paleontology Third Edition. W. H. Freeman and Company, 354 pp (2007).

  • 20.

    Cascales-Miñana, B. & Diez, J. B. The effect of singletons and interval length on interpreting diversity trends from the palaeobotanical record. Palaeontol. Electron. 15, 6A https://palaeo-electronica.org/content/2012-issue-1-articles/123-palaeofloristic-patterns (2012).

    • Google Scholar
  • 21.

    Bakker, R. T. Plesiosaur extinction cycles- Events that mark the beginning, middle and end of the Cretaceous. Geol. Assoc. Can. Spec. Pap. 39, 641–664 (1993).

    • Google Scholar
  • 22.

    Bazzi, M., Einarsson, E. & Kear, B. P. Late Cretaceous (Campanian) actinopterygian fishes from the Kristianstad Basin of southern Sweden. Geol. Soc., London, Spec. Publ. 434, 277–292, https://doi.org/10.1144/SP434.5 (2016).

  • 23.

    Lindgren, J. Stratigraphical distribution of Campanian and Maastrichtian mosasaurs in Sweden – evidence of an intercontinental marine extinction event? GFF 126, 221–229, https://doi.org/10.1080/11035890401262221 (2004).

    • Article
    • Google Scholar
  • 24.

    Hancock, J. M. Some Cretaceous-Tertiary marine faunal changes, In Harland, W. B. et al. eds. The Fossil Record. London, Geological Society of London, 91–104 (1967).

  • 25.

    Wiedmann, J. Evolution or revolution of ammonoids at Cretaceous system boundaries. Biol. Rev. 48, 159–194, https://doi.org/10.1111/j.1469-185X.1973.tb00979.x (1973).

    • Article
    • Google Scholar
  • 26.

    Kennedy, W. J. Ammonite evolution, In Hallam, A. ed. Patterns of Evolution. Amsterdam, Elsevier Scientific Publishing Co., 251–304 (1977).

  • 27.

    Ward, P. D. & Signor, P. W. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9, 183–198, https://doi.org/10.1017/S0094837300007569 (1983).

    • Article
    • Google Scholar
  • 28.

    Jagt-Yazykova, E. A. Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scr. Geologica 143, 15–121 (2011).

    • Google Scholar
  • 29.

    Ruban, D. A. Were Late Cretaceous extinctions of gastropods selective by generic longevity? Geosci. Front. 4, 87–93, https://doi.org/10.1016/j.gsf.2012.04.002 (2013).

  • 30.

    Dhondt, A. V. Cretaceous inoceramid biogeography–a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 92, 217–232, https://doi.org/10.1016/0031-0182(92)90083-H (1992).

    • Article
    • Google Scholar
  • 31.

    Crame, J. A. & Luther, A. The last inoceramid bivalves in Antarctica. Cretac. Res. 18, 179–195, https://doi.org/10.1006/cres.1996.0055 (1997).

    • Article
    • Google Scholar
  • 32.

    Johnson, C. C. The rise and fall of rudist reefs. Am. Sci. 90(2), 148–153 (2002).

  • 33.

    Kauffman, E. G. et al. Molluscan biostratigraphy of the Cretaceous Western Interior Basin, North America. Geol. Assoc. Can. Spec. Pap. 39, 435–451 (1993).

    • Google Scholar
  • 34.

    Marshall, C. R. & Ward, D. Sudden and gradual molluscan extinctions in the Latest Cretaceous of western European Tethys. Science 274, 360–1363, https://doi.org/10.1126/science.274.5291.1360 (1996).

    • Article
    • Google Scholar
  • 35.

    Jiang, S., Bralower, T. J., Patzkowsky, M., Kump, L. R. & Schueth, J. D. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nat. Geosci. 3, 80–285, https://doi.org/10.1038/ngeo775 (2010).

  • 36.

    Melinte, M. C. & Jipa, D. Campanian–Maastrichtian marine red beds in Romania: biostratigraphic and genetic significance. Cretac. Res. 26, 49–56, https://doi.org/10.1016/j.cretres.2004.11.002 (2005).

    • Article
    • Google Scholar
  • 37.

    D’Hondt, S. L., Herbert, T. D., King, J. & Gibson, C. Planktonic foraminifera, asteroid, and marine production–death and recovery at the Cretaceous-Tertiary boundary. Geol. Soc. Am. Spec. Pap. 307, 303–317, https://doi.org/10.1130/0-8137-2307-8.303 (1996).

    • Article
    • Google Scholar
  • 38.

    Alegret, L., Thomas, E. & Lohmann, K. C. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Nat. Acad. Sci. USA 109, 728–732, https://doi.org/10.1073/pnas.1110601109 (2012).

  • 39.

    Bryan, J. R. & Jones, D. S. Fabric of the Cretaceous-Tertiary marine macrofaunal transition at Braggs, Alabama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 279–301, https://doi.org/10.1016/0031-0182(89)90170-3 (1989).

    • Article
    • Google Scholar
  • 40.

    Mancini, E. A., Tew, B. H. & Smith, C. C. Cretaceous-Tertiary contact, Mississippi and Alabama. J. Foraminifer. Res. 19, 93–104 (1989).

    • Article
    • Google Scholar
  • 41.

    Sogot, C. E., Harper, E. M. & Taylor, D. Biogeographical and ecological patterns in bryozoans across the Cretaceous-Paleogene boundary: Implications for the phytoplankton collapse hypothesis. Geol. 41, 631–634, https://doi.org/10.1130/G34020.1 (2013).

  • 42.

    Kennedy, W. J. Thoughts on the evolution and extinction of Cretaceous ammonites. Proc. Geol. Assoc. 100(3), 251–279, https://doi.org/10.1016/S0016-7878(89)80047-1 (1989).

    • Article
    • Google Scholar
  • 43.

    Alvarez, L. W., Alvarez, W., Asaro, F. & Helen, M. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108, https://doi.org/10.1126/science.208.4448.1095 (1980).

  • 44.

    Schulte et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218, https://doi.org/10.1126/science.1177265 (2010).

  • 45.

    Denne, R. A. et al. Massive Cretaceous-Paleogene boundary deposit, deep-water Gulf of Mexico. New evidence for widespread Chicxulub-induced slope failure. Geol. 41, 983–986, https://doi.org/10.1130/G34503.1 (2013).

  • 46.

    Matsui, T., Imamura, R., Tajika, E., Nakano, Y. & Fujisawa, Y. Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event. Geol. Soc. Am. Spec. Pap. 356, 69–77, https://doi.org/10.1130/0-8137-2356-6.69 (2002).

    • Article
    • Google Scholar
  • 47.

    Campbell, C. E., Oboh-Ikuenobe, F. E. & Eifert, T. L. Megatsunami deposit in Cretaceous-Paleogene boundary interval of southeastern Missouri, in Evans, K. R., Horton, J. W. Jr. King, D. T. Jr. & Morrow, J. R. eds., The Sedimentary Record of Meteorite Impacts. Geol. Soc. Am. Spec. Pap. 437, 189–198, https://doi.org/10.1130/2008.2437(11) (2008).

  • 48.

    Renne, R. et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–687, https://doi.org/10.1126/science.1230492 (2013).

  • 49.

    Ohno, S., Konfo, T. & Sugita, S. Production of sulphate-rich vapor during the Chicxulub impact and implication for ocean acidification. Nat. Geosci. 7, 279–282, https://doi.org/10.1038/ngeo2095 (2014).

  • 50.

    Vellekoop, J. et al. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc. Nat. Acad. Sci. USA 111, 7537–7541, https://doi.org/10.1073/pnas.1319253111 (2014).

  • 51.

    Tyrrell, T., Merico, A., Armstrong, M. & McKay, D. I. A. Severity of ocean acidification following the end-Cretaceous asteroid impact. Proc. Nat. Acad. Sci. USA 112, 6556–6561, https://doi.org/10.1073/pnas.1418604112 (2015).

  • 52.

    Haq, B. U., Hardenbol, J. & Vail, R. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Spe. Publ. 42, 71–108, https://doi.org/10.2110/pec.88.01.0071 (1988).

    • Article
    • Google Scholar
  • 53.

    Jablonski, D. & Raup, D. M. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268, 389–391, https://doi.org/10.1126/science.11536722 (1995).

  • 54.

    Dhondt, A. V., Malchus, N., Boumaza, L. & Jaillard, E. Cretaceous oysters from North Africa; origin and distribution. Bull. Soc. Geol. Fr. 170(1), 67–76 (1999).

  • 55.

    Peters, S. E., Kelly, D., Fraass, C. & Andrew, J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nat. 493, 398–401, https://doi.org/10.1038/nature11815 (2013).

  • 56.

    Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nat. 454, 323–326, https://doi.org/10.1038/nature07076 (2008).

  • 57.

    D’Hondt, S., Pilson, M. E. Q., Sigurdsson, H., Hanson, A.K. Jr. & Carey, S. Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22, 983–986, https://doi.org/10.1130/0091-7613(1994)022%3C0983:SWAAEA%3E2.3.CO;2 (1994).

  • 58.

    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nat. 396, 450–453, https://doi.org/10.1038/24839 (1998).

  • 59.

    Hönisch, B. et al. The geological record of ocean acidification. Sci. 335, 1058–1063, https://doi.org/10.1126/science.1208277 (2012).

  • 60.

    Kump, L. R. Interpreting carbon-isotope excursions. strangelove oceans. Geology 19, 299–302, https://doi.org/10.1130/0091-7613(1991)019%3C0299:ICIESO%3E2.3.CO;2 (1991).

  • 61.

    Hart, M. B., Harries, J. & Cárdenas, A. L. The Cretaceous/Paleogene boundary events in the Gulf Coast–Comparisons between Alabama and Texas. Gulf Coast. Assoc. Geolo. Soc. Trans. 63, 235–255 (2013).

    • Google Scholar
  • 62.

    Hart, M. B., FitzPatrick, M. E. J. & Smart, C. W. The Cretaceous/Paleogene boundary. foraminifera, sea grasses, sea level change and sequence stratigraphy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 420–429, https://doi.org/10.1016/j.palaeo.2015.06.046 (2016).

    • Article
    • Google Scholar
  • 63.

    King, D. T. Jr., Morrow, J. R., Petruny, L. W. & Ormö, J. Surficial polymict impact breccia unit, Wetumpka impact structure, Alabama. Shock levels and emplacement mechanism. Geol. Soc. Am. Spec. Pap. 518, 149–164, https://doi.org/10.1130/2015.2518(10) (2015).

    • Article
    • Google Scholar
  • 64.

    Horton, J. D. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August 2017): U.S. Geological Survey data release, https://mrdata.usgs.gov/geology/state/ (2017)

  • 65.

    Raymond, D. E., Osborne, W. E., Copeland, C. W. & Neathery, T. L. Alabama Stratigraphy. Geol. Surv. Ala. Cir. 40, 1–97 (1988).

    • Google Scholar
  • 66.

    Soller, D. Geolex – National Geologic Map – USGS, https://ngmdb.usgs.gov/Geolex/search (2005).

  • 67.

    Peters, S. E. & Foote, M. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27, 583–601, https://doi.org/10.1666/0094-8373(2001)027%3C0583:BITPAR%3E2.0.CO;2 (2001).

    • Article
    • Google Scholar
  • 68.

    Worsley, T. The Cretaceous-Tertiary boundary event in the ocean. Soc. Econ. Paleontol. Mineral. 20, 90–125, https://doi.org/10.2110/pec.74.20.0094 (1974).

    • Article
    • Google Scholar
  • 69.

    Donovan, D. et al. Sequence stratigraphic setting of the Cretaceous-Tertiary boundary in central Alabama. Soc. Econ. Paleontol. Mineral. 42, 299–307, https://doi.org/10.2110/pec.88.01.0299 (1988).

    • Article
    • Google Scholar
  • 70.

    Smith, C. C. The Cretaceous-Tertiary boundary at Moscow Landing, west-central Alabama. Geol. Surv. Ala. Repr. 112, 533–539 (1997).

    • Google Scholar
  • 71.

    Keller, G. et al. Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus. Geolo. Mag. 150, 885–907, https://doi.org/10.1017/S0016756812001069 (2013).

  • 72.

    Jones, D. S. et al. Biotic, geochemical, and paleomagnetic changes across the Cretaceous/Tertiary boundary at Braggs, Alabama. Geology 15, 311–315, https://doi.org/10.1130/0091-7613(1987)15%3C311:BGAPCA%3E2.0.CO;2 (1987).

  • 73.

    Dunhill, A. M., Benton, M. J., Twitchett, R. J. & Newell, A. J. Testing the fossil record: Sampling proxies and scaling in the British Triassic–Jurassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 404, 1–11, https://doi.org/10.1016/j.palaeo.2014.03.026 (2014).

    • Article
    • Google Scholar
  • 74.

    Walker, F. M., Dunhill, M. A., Woods, M. A., Newell, A. J. & Benton, M. J. Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK. J. Geol. Soc. 174, 509–521, https://doi.org/10.1144/jgs2016-093 (2017).

  • 75.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4(1), 9 https://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001).

    • Google Scholar
  • 76.

    Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80, https://doi.org/10.1017/S1089332600001819 (2010b).

    • Article
    • Google Scholar
  • 77.

    Applegate, S. P. The vertebrate fauna of the Selma Formation of Alabama. Fieldiana Geol. Mem. 3, 385–433 (1970).

    • Google Scholar
  • 78.

    Thurmond, J. T. & Jones, D. E. Fossil Vertebrates of Alabama: Tuscaloosa, University of Alabama Press, 244 p. (1981).

  • 79.

    Carrano, M.T. et al. Taxonomic occurrences of Cretaceous to Paleocene Vertebrata recorded: In: Fossilworks, the Evolution of Terrestrial Ecosystems database, and the Paleobiology Database, http://fossilworks.org (2016).

  • 80.

    Benton, M. J., Tverdokhlebov, P. & Surkov, M. V. Ecosystem remodeling among vertebrates at the Permian–Triassic boundary in Russia. Sci. 432, 97–100, https://doi.org/10.1038/nature02950 (2002).

  • 81.

    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Nat. Acad. Sci. USA 113, 6325–6334, https://doi.org/10.1073/pnas.1613094113 (2016).

  • 82.

    Scotese, C. R. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, volume 2, The Cretaceous, Maps 16 – 22, Mollweide Projection, PALEOMAP Project, Evanston, IL, (2014).

  • 83.

    Raup, D. M. The future of analytical paleobiology. Short Courses in Paleontology, 207–216, https://doi.org/10.1017/S2475263000002208 (1991b).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    3 Questions: Emre Gençer on the evolving role of hydrogen in the energy system

    Hurricane-Induced Rainfall is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds