in

Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen

  • 1.

    Wilson, E. O. Success and dominance in ecosystems: the case of the social insects in Excellence in Ecology Vol. 2 (ed. Kinne, O.) (Ecology Institute, 1990).

  • 2.

    Hamilton, W. D. The genetic theory of social behavior. I and II. Journal of Theoretical Biology 7, 1–52 (1964).

  • 3.

    Hamilton, W. Kinship, recognition, disease, and intelligence: constraints of social evolution in Animal Societies: Theories and Facts (eds. Ito, Y., Brown, J. L., & Kikkawa, J.) 81–100 (Japan Scientific Societies Press, 1987).

  • 4.

    Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Current Biology 17, R693–R702 (2007).

  • 5.

    Cremer, S., Pull, C. D. & Fuerst, M. A. Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology 63, 105–123 (2018).

  • 6.

    Liu, L., Zhao, X.-Y., Tang, Q.-B., Lei, C.-L. & Huang, Q.-Y. The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11, 244 (2019).

  • 7.

    Peng, Y.-S., Fang, Y., Xu, S. & Ge, L. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology 49, 54–60 (1987).

    • Article
    • Google Scholar
  • 8.

    Drees, B. M., Miller, R. W., Vinson, B. S. & Georgis, R. Susceptibility and behavioral response of red imported fire ant (Hymenoptera: Formicidae) to selected entomogenous nematodes (Rhabditida: Steinernematidae & Heterorhabditidae). Journal of Economic Entomology 85, 365–370 (1992).

  • 9.

    Oi, D. H. & Pereira, R. M. Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Florida Entomologist 76, 63–74 (1993).

    • Article
    • Google Scholar
  • 10.

    Rosengaus, R. B., Maxmen, A. B., Coates, L. E. & Traniello, J. F. Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behavioral Ecology and Sociobiology 44, 125–134 (1998).

    • Article
    • Google Scholar
  • 11.

    Hughes, W. O., Eilenberg, J. & Boomsma, J. J. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proceedings of the Royal Society of London. Series B: Biological Sciences 269, 1811–1819 (2002).

    • Article
    • Google Scholar
  • 12.

    Wilson-Rich, N., Stuart, R. J. & Rosengaus, R. B. Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology 95, 17–25 (2007).

    • Article
    • Google Scholar
  • 13.

    Yanagawa, A. & Shimizu, S. Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52, 75–85 (2007).

    • Article
    • Google Scholar
  • 14.

    Liu, L. et al. The influence of allogrooming behavior on individual innate immunity in the subterranean termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). Journal of Insect Science 19, 6 (2019).

  • 15.

    Howard, D. F. & Tschinkel, W. R. Aspects of necrophoric behavior in the red imported fire ant, Solenopsis invicta. Behaviour 56, 157–178 (1976).

    • Article
    • Google Scholar
  • 16.

    Siebeneicher, S. R., Bradleigh, S. & Kenerley, C. M. Infection of the red imported fire ant by Beauveria bassiana through various routes of exposure. Journal of Invertebrate Pathology 59, 280–285 (1992).

    • Article
    • Google Scholar
  • 17.

    Trumbo, S. T., Huang, Z.-Y. & Robinson, G. E. Division of labor between undertaker specialists and other middle-aged workers in honey bee colonies. Behavioral Ecology and Sociobiology 41, 151–163 (1997).

    • Article
    • Google Scholar
  • 18.

    Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behaviour 58, 437–442 (1999).

  • 19.

    Bot, A. N., Currie, C. R., Hart, A. G. & Boomsma, J. J. Waste management in leaf-cutting ants. Ethology Ecology & Evolution 13, 225–237 (2001).

    • Article
    • Google Scholar
  • 20.

    Hart, A. G. & Ratnieks, F. L. Waste management in the leaf-cutting ant Atta colombica. Behavioral Ecology 13, 224–231 (2002).

    • Article
    • Google Scholar
  • 21.

    Ballari, S., Farji-Brener, A. G. & Tadey, M. Waste management in the leaf-cutting ant Acromyrmex lobicornis: division of labour, aggressive behaviour, and location of external refuse dumps. Journal of Insect Behavior 20, 87–98 (2007).

    • Article
    • Google Scholar
  • 22.

    Sun, Q. & Zhou, X. Corpse management in social insects. International Journal of Biological Sciences 9, 313–321 (2013).

  • 23.

    Heinze, J. & Walter, B. Moribund ants leave their nests to die in social isolation. Current Biology 20, 249–252 (2010).

  • 24.

    Rueppell, O., Hayworth, M. & Ross, N. Altruistic self-removal of health-compromised honey bee workers from their hive. Journal of Evolutionary Biology 23, 1538–1546 (2010).

  • 25.

    Davis, H. E., Meconcelli, S., Radek, R. & McMahon, D. P. Termites shape their collective behavioural response based on stage of infection. Scientific Reports 8, 14433 (2018).

  • 26.

    Pull, C. D. et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife 7, e32073 (2018).

  • 27.

    Brown, W. L. Jr. An hypothesis concerning the function of the metapleural glands in ants. The American Naturalist 102, 188–191 (1968).

    • Article
    • Google Scholar
  • 28.

    Hölldobler, B. & Engel-Siegel, H. On the metapleural gland of ants. Psyche: A Journal of Entomology 91, 201–224 (1984).

    • Article
    • Google Scholar
  • 29.

    Gilliam, M., Taber, S. III, Lorenz, B. J. & Prest, D. B. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. Journal of Invertebrate Pathology 52, 314–325 (1988).

    • Article
    • Google Scholar
  • 30.

    Ortius-Lechner, D., Maile, R., Morgan, E. D. & Boomsma, J. J. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. Journal of Chemical Ecology 26, 1667–1683 (2000).

  • 31.

    Christe, P., Oppliger, A., Bancalà, F., Castella, G. & Chapuisat, M. Evidence for collective medication in ants. Ecology Letters 6, 19–22 (2003).

    • Article
    • Google Scholar
  • 32.

    Turillazzi, S. et al. Dominulin A and B: two new antibacterial peptides identified on the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-TOF, MALDI-TOF/TOF, and ESI-ion trap. Journal of the American Society for Mass Spectrometry 17, 376–383 (2006).

  • 33.

    Chapuisat, M., Oppliger, A., Magliano, P. & Christe, P. Wood ants use resin to protect themselves against pathogens. Proceedings of the Royal Society of London. Series B: Biological Sciences 274, 2013–2017 (2007).

  • 34.

    Simone, M., Evans, J. D. & Spivak, M. Resin collection and social immunity in honey bees. Evolution: International Journal of Organic Evolution 63, 3016–3022 (2009).

  • 35.

    Visser, A. A., Nobre, T., Currie, C. R., Aanen, D. K. & Poulsen, M. Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microbial Ecology 63, 975–985 (2012).

  • 36.

    Rosengaus, R. B., Mead, K., Du Comb, W. S., Benson, R. W. & Godoy, V. G. Nest sanitation through defecation: antifungal properties of wood cockroach feces. Naturwissenschaften 100, 1051–1059 (2013).

  • 37.

    Arango, R. et al. Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environmental Entomology 45, 1415–1423 (2016).

  • 38.

    Chouvenc, T., Elliott, M. L., Šobotník, J., Efstathion, C. A. & Su, N.-Y. The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environmental Entomology 47, 1431–1439 (2018).

    • CAS
    • Google Scholar
  • 39.

    Shykoff, J. A. & Schmid-Hempel, P. Parasites and the advantage of genetic variability within social insect colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences 243, 55–58 (1991).

  • 40.

    Palmer, K. A. & Oldroyd, B. P. Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite/pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90, 265–268 (2003).

  • 41.

    van Baalen, M. & Beekman, M. The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. The American Naturalist 167, 568–577 (2006).

  • 42.

    Bourgeois, A. L., Rinderer, T. E., Sylvester, H. A., Holloway, B. & Oldroyd, B. P. Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie 43, 539–548 (2012).

    • Article
    • Google Scholar
  • 43.

    Evison, S. E. et al. Host–parasite genotypic interactions in the honey bee: the dynamics of diversity. Ecology and Evolution 3, 2214–2222 (2013).

  • 44.

    Lee, G., McGee, P. & Oldroyd, B. Variable virulence among isolates of Ascosphaera apis: testing the parasite–pathogen hypothesis for the evolution of polyandry in social insects. Naturwissenschaften 100, 229–234 (2013).

  • 45.

    Denier, D. & Bulmer, M. Variation in subterranean termite susceptibility to fatal infections by local Metarhizium soil isolates. Insectes Sociaux 62, 219–226 (2015).

    • Article
    • Google Scholar
  • 46.

    Sherman, P. W., Seeley, T. D. & Reeve, H. K. Parasites, pathogens, and polyandry in social Hymenoptera. The American Naturalist 131, 602–610 (1988).

    • Article
    • Google Scholar
  • 47.

    Schmid-Hempel, P. Parasites in Social Insects. (Princeton University Press, 1998).

  • 48.

    Bourke, A. F. & Franks, N. R. Social Evolution in Ants. (Princeton University Press, 1995).

  • 49.

    Crozier, R. H. & Fjerdingstad, E. J. Polyandry in social Hymenoptera—disunity in diversity? Annales Zoologici Fennici 38, 267–285 (2001).

    • Google Scholar
  • 50.

    Hughes, W., Ratnieks, F. & Oldroyd, B. Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. Journal of Evolutionary Biology 21, 1090–1095 (2008).

  • 51.

    Liersch, S. & Schmid-Hempel, P. Genetic variation within social insect colonies reduces parasite load. Proceedings of the Royal Society of London. Series B: Biological Sciences 265, 221–225 (1998).

    • Article
    • Google Scholar
  • 52.

    Baer, B. & Schmid-Hempel, P. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397, 151–154 (1999).

  • 53.

    Baer, B. & Schmid-Hempel, P. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55, 1639–1643 (2001).

  • 54.

    Tarpy, D. R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 99–103 (2003).

    • Article
    • Google Scholar
  • 55.

    Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London. Series B: Biological Sciences 274, 67–72 (2006).

    • Article
    • Google Scholar
  • 56.

    Tarpy, D. R. & Seeley, T. D. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93, 195–199 (2006).

  • 57.

    Mattila, H. R., Rios, D., Walker-Sperling, V. E., Roeselers, G. & Newton, I. L. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One 7, e32962 (2012).

  • 58.

    Hughes, W. O. & Boomsma, J. J. Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58, 1251–1260 (2004).

  • 59.

    Reber, A., Castella, G., Christe, P. & Chapuisat, M. Experimentally increased group diversity improves disease resistance in an ant species. Ecology Letters 11, 682–689 (2008).

  • 60.

    Thorne, B. L. Evolution of eusociality in termites. Annual Review of Ecology and Systematics 28, 27–54 (1997).

    • Article
    • Google Scholar
  • 61.

    Nalepa, C. A. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecological Entomology 40, 323–335 (2015).

    • Article
    • Google Scholar
  • 62.

    Vargo, E. L. Diversity of termite breeding systems. Insects 10, 52 (2019).

    • Article
    • Google Scholar
  • 63.

    DeHeer, C. & Vargo, E. Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insectes Sociaux 55, 190–199 (2008).

    • Article
    • Google Scholar
  • 64.

    Minkley, N., Fujita, A., Brune, A. & Kirchner, W. Nest specificity of the bacterial community in termite guts (Hodotermes mossambicus). Insectes Sociaux 53, 339–344 (2006).

    • Article
    • Google Scholar
  • 65.

    Matsuura, K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 92, 20–26 (2001).

    • Article
    • Google Scholar
  • 66.

    Matsuura, K. & Nishida, T. Colony fusion in a termite: What makes the society “open”? Insectes Sociaux 48, 378–383 (2001).

    • Article
    • Google Scholar
  • 67.

    Thorne, B. L. Alate production and sex ratio in colonies of the Neotropical termite Nasutitermes corniger (Isoptera; Termitidae). Oecologia 58, 103–109 (1983).

  • 68.

    Jenkins, T. M., Basten, C. J., Kresovich, S. & Forshcler, B. Mitochondrial gene sequence questions Reticulitermes sp. social structure (Isoptera: Rhinotermitidae). Sociobiology 34, 161–172 (1999).

    • Google Scholar
  • 69.

    Bulmer, M. S., Adams, E. S. & Traniello, J. F. Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behavioral Ecology and Sociobiology 49, 236–243 (2001).

    • Article
    • Google Scholar
  • 70.

    Deheer, C. J. & Kamble, S. T. Colony genetic organization, fusion and inbreeding in Reticulitermes flavipes from the Midwestern US. Sociobiology 51, 307–325 (2008).

    • Google Scholar
  • 71.

    Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Sociaux 57, 393–402 (2010).

    • Article
    • Google Scholar
  • 72.

    Majid, A. A., Kamble, S. T. & Chen, H. Breeding patterns and population genetics of eastern subterranean termites Reticulitermes flavipes in urban environment of Nebraska, United States. Sociobiology 65, 506–514 (2018).

    • Article
    • Google Scholar
  • 73.

    Polizzi, J. M. & Forschler, B. T. Factors that affect aggression among the worker caste of Reticulitermes spp. subterranean termites (Isoptera: Rhinotermitidae). Journal of Insect Behavior 12, 133–146 (1999).

    • Article
    • Google Scholar
  • 74.

    Fisher, M. L., Gold, R. E., Vargo, E. L. & Cognato, A. I. Behavioral and genetic analysis of colony fusion in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Sociobiology 44, 565–576 (2004).

    • Google Scholar
  • 75.

    Chouvenc, T. & Su, N.-Y. Testing the role of cuticular hydrocarbons on intercolonial agonism in two subterranean termite species (Coptotermes) and their hybrids. Insectes Sociaux 64, 347–355 (2017).

    • Article
    • Google Scholar
  • 76.

    Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).

  • 77.

    Myles, T. G. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 40, 243–256 (2002).

    • Google Scholar
  • 78.

    Bulmer, M. S., Franco, B. A. & Fields, E. G. Subterranean termite social alarm and hygienic responses to fungal pathogens. Insects 10, 240 (2019).

  • 79.

    Rosengaus, R. B., Guldin, M. R. & Traniello, J. F. Inhibitory effect of termite fecal pellets on fungal spore germination. Journal of Chemical Ecology 24, 1697–1706 (1998).

  • 80.

    Rosengaus, R. B. & Traniello, J. F. Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behavioral Ecology and Sociobiology 50, 546–556 (2001).

    • Article
    • Google Scholar
  • 81.

    Chouvenc, T. & Su, N.-Y. When subterranean termites challenge the rules of fungal epizootics. PLoS One 7, e34484 (2012).

  • 82.

    Sun, Q., Haynes, K. F. & Zhou, X. Differential undertaking response of a lower termite to congeneric and conspecific corpses. Scientific Reports 3, 1650 (2013).

  • 83.

    Traniello, J. F., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proceedings of the National Academy of Sciences 99, 6838–6842 (2002).

  • 84.

    Shimizu, S. & Yamaji, M. Effect of density of the termite, Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae), on the susceptibilities to Metarhizium anisopliae. Applied Entomology and Zoology 38, 125–130 (2003).

    • Article
    • Google Scholar
  • 85.

    Lamberty, M. et al. Insect immunity constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. Journal of Biological Chemistry 276, 4085–4092 (2001).

  • 86.

    Bulmer, M. S. & Crozier, R. H. Duplication and diversifying selection among termite antifungal peptides. Molecular Biology and Evolution 21, 2256–2264 (2004).

  • 87.

    Hamilton, C. & Bulmer, M. S. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen. Developmental & Comparative Immunology 36, 372–377 (2012).

  • 88.

    Chouvenc, T., Su, N.-Y. & Robert, A. Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. Journal of Invertebrate Pathology 101, 130–136 (2009).

  • 89.

    Myles, T. G. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–43 (1999).

    • Google Scholar
  • 90.

    Deheer, C. J. & Vargo, E. L. Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Molecular Ecology 13, 431–441 (2004).

  • 91.

    DeHeer, C. J. & Vargo, E. L. An indirect test of inbreeding depression in the termites Reticulitermes flavipes and Reticulitermes virginicus. Behavioral Ecology and Sociobiology 59, 753–761 (2006).

    • Article
    • Google Scholar
  • 92.

    Nutting, W. Flight and colony foundation in Biology of Termites Vol. 1 (eds. Krishna, K. & Weesner, F. M.) 233–282 (Academic Press, 1969).

  • 93.

    Calleri, D. V., McGrail Reid, E., Rosengaus, R. B., Vargo, E. L. & Traniello, J. F. Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proceedings of the Royal Society of London. Series B: Biological Sciences 273, 2633–2640 (2006).

  • 94.

    Cole, E. L., Ilieş, I. & Rosengaus, R. B. Competing physiological demands during incipient colony foundation in a social insect: consequences of pathogenic stress. Frontiers in Ecology and Evolution 6, 103 (2018).

    • Article
    • Google Scholar
  • 95.

    Matsuura, K. & Nishida, T. Comparison of colony foundation success between sexual pairs and female asexual units in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). Population Ecology 43, 119–124 (2001).

    • Article
    • Google Scholar
  • 96.

    Matsuura, K., Fujimoto, M., Goka, K. & Nishida, T. Cooperative colony foundation by termite female pairs: altruism for survivorship in incipient colonies. Animal Behaviour 64, 167–173 (2002).

    • Article
    • Google Scholar
  • 97.

    Briano, J., Patierson, R. & Cordo, H. Relationship between colony size of Solenopsis richteri (Hymenoptera: Formicidae) and infection with Thelohania solenopsae (Microsporida: Thelohaniidae) in Argentina. Journal of Economic Entomology 88, 1233–1237 (1995).

    • Article
    • Google Scholar
  • 98.

    Pérez-Lachaud, G., Valenzuela, J. E. & Lachaud, J.-P. Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)? Florida Entomologist 94, 677–684 (2011).

    • Article
    • Google Scholar
  • 99.

    Schmidt, A. M., Linksvayer, T. A., Boomsma, J. J. & Pedersen, J. S. No benefit in diversity? The effect of genetic variation on survival and disease resistance in a polygynous social insect. Ecological Entomology 36, 751–759 (2011).

    • Article
    • Google Scholar
  • 100.

    Vargo, E. L. Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57, 2805–2818 (2003).

  • 101.

    DeHeer, C., Kutnik, M., Vargo, E. & Bagneres, A. The breeding system and population structure of the termite Reticulitermes grassei in Southwestern France. Heredity 95, 408–415 (2005).

  • 102.

    Vargo, E. L. & Carlson, J. R. Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in central North Carolina using two classes of molecular genetic markers. Environmental Entomology 35, 173–187 (2006).

    • Article
    • Google Scholar
  • 103.

    Vargo, E. L., Juba, T. R. & Deheer, C. J. Relative abundance and comparative breeding structure of subterranean termite colonies (Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes virginicus, and Coptotermes formosanus) in a South Carolina lowcountry site as revealed by molecular markers. Annals of the Entomological Society of America 99, 1101–1109 (2006).

    • Article
    • Google Scholar
  • 104.

    Hughes, W. O., Thomsen, L., Eilenberg, J. & Boomsma, J. J. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. Journal of Invertebrate Pathology 85, 46–53 (2004).

  • 105.

    Yanagawa, A. et al. Behavioral changes in the termite, Coptotermes formosanus (Isoptera), inoculated with six fungal isolates. Journal of Invertebrate Pathology 107, 100–106 (2011).

  • 106.

    Chouvenc, T., Su, N.-Y. & Elliott, M. L. Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. Journal of Economic Entomology 101, 885–893 (2008).

  • 107.

    Therneau, T. M. & Lumley, T. Package ‘survival’. R Top Doc 128 (2015).

  • 108.

    R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2018).


  • Source: Ecology - nature.com

    3 Questions: Emre Gençer on the evolving role of hydrogen in the energy system

    Hurricane-Induced Rainfall is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds