in

Revisiting carbon isotope discrimination in C3 plants shows respiration rules when photosynthesis is low

  • 1.

    Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).

    • CAS
    • Google Scholar
  • 2.

    Busch, F. A., Sage, T. L., Cousins, A. B. & Sage, R. F. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ. 36, 200–212 (2013).

  • 3.

    Gong, X. Y., Tcherkez, G., Wenig, J., Schäufele, R. & Schnyder, H. Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method. New Phytol. 218, 1371–1382 (2018).

  • 4.

    Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).

    • CAS
    • Google Scholar
  • 5.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    • CAS
    • Google Scholar
  • 6.

    Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).

  • 7.

    Yakir, D. & Sternberg, Ld. S. L. The use of stable isotopes to study ecosystem gas exchange. Oecologia 123, 297–311 (2000).

  • 8.

    Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).

    • CAS
    • Google Scholar
  • 9.

    Evans, J. R., Sharkey, T. D., Berry, J. A. & Farquhar, G. D. Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher plants. Aust. J. Plant Physiol. 13, 281–292 (1986).

    • CAS
    • Google Scholar
  • 10.

    Ubierna, N. et al. Critical review: incorporating the arrangement of mitochondria and chloroplasts into models of photosynthesis and carbon isotope discrimination. Photosynth. Res. 141, 5–31 (2019).

  • 11.

    Tcherkez, G. et al. On the 13C/12C isotopic signal of day and night respiration at the mesocosm level. Plant Cell Environ. 33, 900–913 (2010).

  • 12.

    Cernusak, L. A., Marshall, J. D., Comstock, J. P. & Balster, N. J. Carbon isotope discrimination in photosynthetic bark. Oecologia 128, 24–35 (2001).

    • PubMed
    • Google Scholar
  • 13.

    Gu, L. & Sun, Y. Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ. 37, 1231–1249 (2014).

  • 14.

    Barbour, M. M., Ryazanova, S. & Tcherkez, G. in Plant Respiration: Metabolic Fluxes and Carbon Balance (eds Tcherkez, G. & Ghashghaie, J.) 143–160 (Springer International Publishing, 2017).

  • 15.

    Flexas, J. et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30, 1284–1298 (2007).

  • 16.

    Vrábl, D., Vašková, M., Hronková, M., Flexas, J. & Šantrůček, J. Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J. Exp. Bot. 60, 2315–2323 (2009).

    • PubMed
    • Google Scholar
  • 17.

    Hassiotou, F., Ludwig, M., Renton, M., Veneklaas, E. J. & Evans, J. R. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J. Exp. Bot. 60, 2303–2314 (2009).

  • 18.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

  • 19.

    Warren, C. Estimating the internal conductance to CO2 movement. Funct. Plant Biol. 33, 431–442 (2006).

    • CAS
    • Google Scholar
  • 20.

    Harley, P. C., Loreto, F., Dimarco, G. & Sharkey, T. D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98, 1429–1436 (1992).

  • 21.

    Di Marco, G., Manes, F., Tricoli, D. & Vitale, E. Fluorescence parameters measured concurrently with net photosynthesis to investigate chloroplastic CO2 concentration in leaves of Quercus ilex L. J. Plant Physiol. 136, 538–543 (1990).

    • Google Scholar
  • 22.

    van der Putten, P. E. L., Yin, X. & Struik, P. C. Calibration matters: on the procedure of using the chlorophyll fluorescence method to estimate mesophyll conductance. J. Plant Physiol. 220, 167–172 (2018).

    • PubMed
    • Google Scholar
  • 23.

    Farquhar, G. D. & Cernusak, L. A. Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ. 35, 1221–1231 (2012).

  • 24.

    McNevin, D. B. et al. Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J. Biol. Chem. 282, 36068–36076 (2007).

  • 25.

    Roeske, C. & O’Leary, M. H. Carbon isotope effects on enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23, 6275–6284 (1984).

    • CAS
    • Google Scholar
  • 26.

    Guy, R. D., Fogel, M. L. & Berry, J. A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47 (1993).

  • 27.

    Evans, J. R. & von Caemmerer, S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. 36, 745–756 (2013).

  • 28.

    Gillon, J. S. & Yakir, D. Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol. 123, 201–214 (2000).

  • 29.

    Igamberdiev, A. U. et al. Photorespiration contributes to stomatal regulation and carbon isotope fractionation: a study with barley, potato and Arabidopsis plants deficient in glycine decarboxylase. Photosynth. Res. 81, 139–152 (2004).

    • CAS
    • Google Scholar
  • 30.

    Lanigan, G. J., Betson, N., Griffiths, H. & Seibt, U. Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol. 148, 2013–2020 (2008).

  • 31.

    Rooney, M. A. Short-term Carbon Isotopic Fractionation in Plants (Univ. of Wisconsin-Madison, 1988).

  • 32.

    Ubierna, N., Holloway-Phillips, M.-M. & Farquhar, G. D. in Photosynthesis: Methods and Protocols (Ed. Covshoff, D.) 155–196 (Springer, 2018).

  • 33.

    Bathellier, C., Badeck, F.-W. & Ghashghaie, J. in Plant Respiration: Metabolic Fluxes and Carbon Balance (eds Tcherkez, G. & Ghashghaie, J.) 43–68 (Springer International Publishing, 2017).

  • 34.

    Ubierna, N. & Farquhar, G. D. Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ. 37, 1494–1498 (2014).

  • 35.

    O’Leary, M. H. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567 (1981).

    • Google Scholar
  • 36.

    Tcherkez, G., Farquhar, G., Badeck, F. & Ghashghaie, J. Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Funct. Plant Biol. 31, 857–877 (2004).

    • CAS
    • Google Scholar
  • 37.

    Tcherkez, G., Mahé, A. & Hodges, M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 16, 499–506 (2011).

  • 38.

    von Caemmerer, S. & Farquhar, G. D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153, 376–387 (1981).

    • Google Scholar
  • 39.

    Tholen, D., Ethier, G., Genty, B., Pepin, S. & Zhu, X.-G. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ. 35, 2087–2103 (2012).

  • 40.

    Yin, X. & Struik, P. C. Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C3 leaves. Photosynth. Res. 132, 211–220 (2017).

  • 41.

    Tholen, D., Éthier, G. & Genty, B. Mesophyll conductance with a twist. Plant Cell Environ. 37, 2456–2458 (2014).

  • 42.

    Tcherkez, G. et al. Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. New Phytol. 216, 986–1001 (2017).

  • 43.

    Tcherkez, G. et al. Short-term effects of CO2 and O2 on citrate metabolism in illuminated leaves. Plant Cell Environ. 35, 2208–2220 (2012).

  • 44.

    Tcherkez, G., Mauve, C., Lamothe, M., Le Bras, C. & Grapin, A. The 13C/12C isotopic signal of day‐respired CO2 in variegated leaves of Pelargonium × hortorum. Plant Cell Environ. 34, 270–283 (2011).

  • 45.

    Schnyder, H., Schäufele, R., Lötscher, M. & Gebbing, T. Disentangling CO2 fluxes: direct measurements of mesocosm-scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments. Plant Cell Environ. 26, 1863–1874 (2003).

    • CAS
    • Google Scholar
  • 46.

    Wingate, L., Seibt, U., Moncrieff, J. B., Jarvis, P. G. & Lloyd, J. Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ. 30, 600–616 (2007).

  • 47.

    Gauthier, P. P. G. et al. In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO2 assimilation in illuminated leaves of Brassica napus. New Phytol. 185, 988–999 (2010).

  • 48.

    Tazoe, Y., von Caemmerer, S., Badger, M. R. & Evans, J. R. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J. Exp. Bot. 60, 2291–2301 (2009).

  • 49.

    Ellsworth, P. V., Ellsworth, P. Z., Koteyeva, N. K. & Cousins, A. B. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol. 219, 66–76 (2018).

  • 50.

    Jahan, E., Amthor, J. S., Farquhar, G. D., Trethowan, R. & Barbour, M. M. Variation in mesophyll conductance among Australian wheat genotypes. Funct. Plant Biol. 41, 568–580 (2014).

    • Google Scholar
  • 51.

    Ubierna, N., Sun, W., Kramer, D. M. & Cousins, A. B. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis. Plant Cell Environ. 36, 365–381 (2013).

  • 52.

    Douthe, C., Dreyer, E., Epron, D. & Warren, C. R. Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. J. Exp. Bot. 62, 5335–5346 (2011).

  • 53.

    Tcherkez, G. How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct. Plant Biol. 33, 911–920 (2006).

    • CAS
    • Google Scholar
  • 54.

    Igamberdiev, A. U. et al. Decarboxylation of glycine contributes to carbon isotope fractionation in photosynthetic organisms. Photosynth. Res. 67, 177–184 (2001).

  • 55.

    Ivlev, A. A., Bykova, N. V. & Igamberdiev, A. U. Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction. FEBS Lett. 386, 174–176 (1996).

  • 56.

    Holloway-Phillips, M., Cernusak, L. A., Stuart-Williams, H., Ubierna, N. & Farquhar, G. D. Two-source δ18O method to validate the CO18O-photosynthetic discrimination model: implications for mesophyll conductance. Plant Physiol. 181, 1175–1190 (2019).

  • 57.

    Farquhar, G. D. & Busch, F. A. Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol. 214, 570–584 (2017).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels