in

Chronic disturbance modulates symbiont (Symbiodiniaceae) beta diversity on a coral reef

  • 1.

    Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: Theory and practice. Ecology 65, 1–13 (1984).

    • Article
    • Google Scholar
  • 2.

    Novak, M. et al. Characterizing species interactions to understand press perturbations: What is the community matrix? Annual Review of Ecology, Evolution, and Systematics 47, 409–432 (2016).

    • Article
    • Google Scholar
  • 3.

    Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: implications for conservation. Conservation Biology 6, 324–337 (1992).

    • Article
    • Google Scholar
  • 4.

    Cayuela, L., Golicher, D. J., Benayas, J. M. R., González-Espinosa, M. & Ramírez-Marcial, N. Fragmentation, disturbance and tree diversity conservation in tropical montane forests. Journal of Applied Ecology 43, 1172–1181 (2006).

    • Article
    • Google Scholar
  • 5.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9, 222–228 (2011).

    • Article
    • Google Scholar
  • 6.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends in Ecology and Evolution 31, 67–80 (2016).

  • 7.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  • 8.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology and Evolution 30, 104–113 (2015).

  • 9.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28 (2011).

  • 10.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14, 450–453 (1999).

  • 11.

    Olden, J. D. & Poff, N. L. Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85, 1867–1875 (2004).

    • Article
    • Google Scholar
  • 12.

    Karp, D. S., Rominger, A. J., Zook, J. & Ranganathan, J. & others. Intensive agriculture erodes β‐diversity at large scales. Ecology 15, 963–970 (2012).

    • Google Scholar
  • 13.

    Iacarella, J. C. et al. Anthropogenic disturbance homogenizes seagrass fish communities. Global Change Biology 24, 1904–1918 (2018).

  • 14.

    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications 7, 11833 (2016).

  • 15.

    McDevitt-Irwin, J. M., Baum, J. K., Garren, M. & Vega Thurber, R. L. Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science 4, 262 (2017).

    • Article
    • Google Scholar
  • 16.

    McDevitt-Irwin, J. M., Garren, M., McMinds, R., Vega Thurber, R. & Baum, J. K. Variable interaction outcomes of local disturbance and El Niño-induced heat stress on coral microbiome alpha and beta diversity. Coral Reefs early onli, (2019).

  • 17.

    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nature Microbiology 2, 17121 (2017).

  • 18.

    Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Scientific Reports 7 (2017).

  • 19.

    Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. Royal Society Open Science 3, 160471 (2016).

  • 20.

    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

  • 21.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology 28, 2570–2580 (2018).

  • 22.

    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change 3, 160 (2012).

  • 23.

    Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nature Climate Change 3, 259–262 (2013).

  • 24.

    Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global Change Biology 20, 544–554 (2014).

  • 25.

    Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).

    • Article
    • Google Scholar
  • 26.

    Stat, M., Morris, E. & Gates, R. D. Functional diversity in coral-dinoflagellate symbiosis. Proceedings of the National Academy of Sciences 105, 9256–9261 (2008).

  • 27.

    Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecology & Evolution 32, 735–745 (2017).

    • Article
    • Google Scholar
  • 28.

    Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Frontiers in Marine Science 4, 401 (2017).

    • Article
    • Google Scholar
  • 29.

    Tonk, L., Bongaerts, P., Sampayo, E. M. & Hoegh-Guldberg, O. SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecology 13, 7 (2013).

  • 30.

    Kennedy, E. V. et al. Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key caribbean reef-builder, Orbicella annularis. Proceedings of the Royal Society B: Biological Sciences 283 (2016).

  • 31.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research 50, 839–866 (1999).

    • Google Scholar
  • 32.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

  • 33.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 34.

    Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Marine Ecology Progress Series 60, 185–203 (1990).

  • 35.

    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian sorals. Annual Review of Ecology, Evolution, and Systematics 40, 551–571 (2009).

    • Article
    • Google Scholar
  • 36.

    Hartmann, A. C. et al. Acquisition of obligate mutualist symbionts during the larval stage is not beneficial for a coral host. Molecular Ecology 28, 141–155 (2019).

  • 37.

    LaJeunesse, T. C. et al. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proceedings of the Royal Society B: Biological Sciences 277, 2925–2934 (2010).

  • 38.

    Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. The ISME Journal 10, 2693–2701 (2016).

  • 39.

    Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 (2004).

  • 40.

    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. PLoS ONE 5, e13258 (2010).

  • 41.

    Manning, M. M. & Gates, R. D. Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnology and Oceanography 53, 1853 (2008).

  • 42.

    Littman, R. A., van Oppen, M. J. H. & Willis, B. L. Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). Journal of Experimental Marine Biology and Ecology 48–53 (2008).

  • 43.

    Takabayashi, M., Adams, L. M., Pochon, X. & Gates, R. D. Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai’i and Florida. Coral Reefs 31, 157–167 (2012).

  • 44.

    Granados-Cifuentes, C., Neigel, J., Leberg, P. & Rodriguez-Lanetty, M. Genetic diversity of free-living Symbiodinium in the Caribbean: the importance of habitats and seasons. Coral Reefs 34, 927–939 (2015).

  • 45.

    Lee, M. J., Jeong, H. J., Jang, S. H., Lee, S. Y. & Kang, N. S. S. Most low-abundance ‘background’ Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microbial Ecology 71, 771–83 (2016).

  • 46.

    Yamashita, H. & Koike, K. Genetic identity of free-living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycological Research 61, 68–80 (2013).

  • 47.

    Nitschke, M. R., Davy, S. K. & Ward, S. Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35, 335–344 (2016).

  • 48.

    Thornhill, D. J., Howells, E. J., Wham, D. C., Steury, T. D. & Santos, S. R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Molecular Ecology 26, 2640–2659 (2017).

  • 49.

    Pochon, X. et al. Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. Journal of Phycology 46, 53–65 (2010).

  • 50.

    Huang, H. et al. Diversity of free-living and symbiotic Symbiodinium in the coral reefs of Sanya, South China Sea. Marine Biology Research 9, 117–128 (2013).

  • 51.

    Sweet, M. J. Symbiodinium diversity within Acropora muricata and the surrounding environment. Marine Ecology 35, 343–353 (2014).

  • 52.

    Cunning, R., Yost, D. M., Guarinello, M. L., Putnam, H. M. & Gates, R. D. Variability of Symbiodinium communities in waters, sediments, and corals of thermally distinct reef pools in American Samoa. PLoS One 10, e0145099 (2015).

  • 53.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11, 2639–2643 (2017).

  • 54.

    Lee-Cruz, L., Edwards, D. P., Tripathi, B. M. & Adams, J. M. Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Applied and Environmental Microbiology 79, 7290–7297 (2013).

  • 55.

    de Carvalho, T. S. et al. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 97, 2760–2771 (2016).

  • 56.

    Cooper, T. F. et al. Environmental factors controlling the distribution of Symbiodinium harboured by the coral Acropora millepora on the Great Barrier Reef. PLoS ONE 6, e25536 (2011).

  • 57.

    Putnam, H. M., Stat, M., Pochon, X. & Gates, R. D. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proceedings of the Royal Society B: Biological Sciences 279, 4352–4361 (2012).

  • 58.

    Cunning, R., Gates, R. D. & Edmunds, P. J. Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands. PeerJ 5, e3472 (2017).

  • 59.

    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Molecular Ecology 23, 4418–4433 (2014).

  • 60.

    Quigley, K. M. et al. Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS ONE 9, e94297 (2014).

  • 61.

    Green, E. A., Davies, S. W., Matz, M. V. & Medina, M. Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2, e386 (2014).

  • 62.

    Ziegler, M., Stone, E., Colman, D., Takacs-Vesbach, C. & Shepherd, U. Patterns of Symbiodinium (Dinophyceae) diversity and assemblages among diverse hosts and the coral reef environment of Lizard Island, Australia. Journal of Phycology 54, 447–460 (2018).

  • 63.

    Treml, E. A., Halpin, P. N., Urban, D. L. & Pratson, L. F. Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecology 23, 19–36 (2008).

    • Article
    • Google Scholar
  • 64.

    Baums, I. B., Devlin-Durante, M. K. & LaJeunesse, T. C. New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Molecular Ecology 23, 4203–4204 (2014).

  • 65.

    Fitt, W. K. & Trench, R. K. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytologist 94, 421–432 (1983).

    • Article
    • Google Scholar
  • 66.

    Kirk, N. L., Andras, J. P., Harvell, C. D., Santos, S. R. & Coffroth, M. A. Population structure of Symbiodinium sp. associated with the common sea fan, Gorgonia ventalina, in the Florida Keys across distance, depth, and time. Marine Biology 156, 1609–1623 (2009).

    • Article
    • Google Scholar
  • 67.

    Nitschke, M. R. The free-living Symbiodinium reservoir and scleractinian coral symbiont acquisition. (espace.library.uq.edu.au, 2015).

  • 68.

    Harii, S., Yamamoto, M. & Hoegh-Guldberg, O. The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Marine Biology 157, 1215–1224 (2010).

  • 69.

    Connolly, S. R. & Baird, A. H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 3572–3583 (2010).

  • 70.

    Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).

  • 71.

    Carilli, J. & Walsh, S. Benthic foraminiferal assemblages from Kiritimati (Christmas) Island indicate human-mediated nutrification has occurred over the scale of decades. Marine Ecology Progress Series 456, 87–99 (2012).

  • 72.

    Pochon, X. & Pawlowski, J. & Others. Evolution of the soritids-Symbiodinium symbiosis. Symbiosis 42, 77–88 (2006).

    • Google Scholar
  • 73.

    Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proceedings of the Royal Society B: Biological Sciences 279, 2609–2618 (2012).

  • 74.

    Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals. Scientific Reports 7 (2017).

  • 75.

    Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. Royal Society Open Science 3, 160322 (2016).

  • 76.

    Kojis, B. L. & Quinn, N. J. Reproductive strategies in four species of Porites (Scleractinia). In Proceedings of the 4th International Coral Reef Symposium 145–151 (1981).

  • 77.

    Willis, B. L., Babcock, R. C., Harrison, P. L. & Oliver, J. K. Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. In Proceedings of the Fifth International Coral Reef Congress, Tahiti, 1985, Vol. 4 343–348 (1985).

  • 78.

    Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS ONE 8, e59596 (2013).

  • 79.

    Quigley, K. M., Warner, P. A., Bay, L. K. & Willis, B. L. Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral. Heredity 121, 524–536 (2018).

  • 80.

    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Coral reefs: corals’ adaptive response to climate change. Nature 430, 741 (2004).

  • 81.

    Rowan, R. Coral bleaching: Thermal adaptation in reef coral symbionts. Nature 430, 742 (2004).

  • 82.

    Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences 275, 1359–1365 (2008).

  • 83.

    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. The ISME Journal 12, 921–930 (2018).

  • 84.

    Frank, S. A. Host-symbiont conflict over the mixing of symbiotic lineages. Proceedings of the Royal Society B: Biological Sciences 263 (1996).

  • 85.

    Walsh, S. M. Ecosystem-scale effects of nutrients and fishing on coral reefs. Journal of Marine Biology 2011, 1–13 (2011).

  • 86.

    Watson, M. S., Claar, D. C. & Baum, J. K. Subsistence in isolation: Fishing dependence and perceptions of change on Kiritimati, the world’s largest atoll. Ocean and Coastal Management 123, 1–8 (2016).

    • Article
    • Google Scholar
  • 87.

    Morate, O. 2015 Population and Housing Census. Volume 1: Management Report and Basic Tables. (2016).

  • 88.

    Tolman, H. & Chalikov, D. Development of a third-generation ocean wave model at NOAA/NCEP. in Int. Sym. Waves: Physical & Numerical Modelling (ed. M. Isaacson, M. C. Q.) 724–733 (University of British Columbia Press, 1994).

  • 89.

    Tolman, H. L. & Others. User manual and system documentation of WAVEWATCH III version 3.14. Technical note, MMAB Contribution 276, 220 (2009).

    • Google Scholar
  • 90.

    Gilleland, E. & Katz, R. W. & Others. extRemes 2.0: an extreme value analysis package in R. Journal of Statistical Software 72, 1–39 (2016).

    • Article
    • Google Scholar
  • 91.

    Millard, S. P. EnvStats: An R package for environmental statistics. (Springer, 2013).

  • 92.

    Stat, M., Loh, W. K. W., LaJeunesse, T. C., Hoegh-Guldberg, O. & Carter, D. A. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713 (2009).

  • 93.

    Cunning, R., Silverstein, R. N. & Baker, A. C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proceedings of the Royal Society B: Biological Sciences 282, 20141725 (2015).

  • 94.

    Thornhill, D. J., Lajeunesse, T. C. & Santos, S. R. Measuring rDNA diversity in eukaryotic microbial systems: How intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Molecular Ecology 16, 5326–5340 (2007).

  • 95.

    Smith, E. G., Hume, B. C. C., Delaney, P., Wiedenmann, J. & Burt, J. A. Genetic structure of coral-Symbiodinium symbioses on the world’s warmest reefs. PLoS One 12, e0180169 (2017).

  • 96.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583 (2016).

  • 97.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

  • 98.

    R Development Core Team. R: A language and environment for statistical computing (2008).

  • 99.

    Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal 8, 352–359 (2016).

    • Article
    • Google Scholar
  • 100.

    Pochon, X. & Gates, R. D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawaii. Molecular Phylogenetics and Evolution 56, 6 (2010).

  • 101.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

  • 102.

    Oksanen, J. Vegan: an introduction to ordination (2017).

  • 103.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5, 169–172 (2011).

  • 104.

    Anderson, M. J. & Walsh, D. C. I. Permanova, anosim, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs 83, 557–574 (2013).

    • Article
    • Google Scholar
  • 105.

    Larsson, J. eulerr: Area-proportional Euler and Venn diagrams with circles or ellipses. Available at: https://cran.r-project.org/package=eulerr (2018).

  • 106.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    • Article
    • Google Scholar
  • 107.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).


  • Source: Ecology - nature.com

    How plants protect themselves from sun damage

    Lighting recycling in Australia: A complete guide to recycling lighting waste