in

Extreme summer heat and drought lead to early fruit abortion in European beech

  • 1.

    Herrera, C. M., Jordano, P., Guitian, J. & Traveset, A. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am. Nat. 152, 576–594 (1998).

  • 2.

    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).

  • 3.

    Kelly, D. & Sork, V. L. Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Evol. Syst. 33, 427–447 (2002).

    • Article
    • Google Scholar
  • 4.

    Nussbaumer, A. et al. Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. For. Ecol. Manag. 363, 237–251 (2016).

    • Article
    • Google Scholar
  • 5.

    Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).

    • Google Scholar
  • 6.

    Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol. 215, 595–608 (2017).

    • Article
    • Google Scholar
  • 7.

    Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. For. Meteor. 192-193, 9–17 (2014).

    • Article
    • Google Scholar
  • 8.

    Drobyshev, I. et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For. Ecol. Manag. 259, 2160–2171 (2010).

    • Article
    • Google Scholar
  • 9.

    Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 1–12 (2015).

    • Article
    • Google Scholar
  • 10.

    Lebourgeois, F. et al. Assessing the roles of temperature, carbon inputs and airborne pollen as drivers of fructification in European temperate deciduous forests. Eur. J. For. Res. 137, 349–365 (2018).

    • Article
    • Google Scholar
  • 11.

    Nussbaumer, A. et al. Impact of weather cues and resource dynamics on mast occurrence in the main forest tree species in Europe. For. Ecol. Manag. 429, 336–350 (2018).

    • Article
    • Google Scholar
  • 12.

    Matthews, J. D. The influence of weather on the frequency of beech mast years in England. Forestry 28, 107–116 (1955).

    • Article
    • Google Scholar
  • 13.

    Hilton, G. M. & Packham, J. R. Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry 76, 319–328 (2003).

    • Article
    • Google Scholar
  • 14.

    Bogdziewicz, M., Steele, M. A., Marino, S. & Crone, E. E. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants. New Phytol. 219, 98–108 (2018).

    • Article
    • Google Scholar
  • 15.

    Bogdziewicz, M. et al. Environmental veto synchronizes mast seeding in four contrasting tree species. Am. Nat. 194, 246–259 (2019).

    • Article
    • Google Scholar
  • 16.

    Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).

  • 17.

    Geburek, T., Hiess, K., Litschauer, R. & Milasowsky, N. Temporal pollen pattern in temperate trees: expedience or fate? Oikos 121, 1603–1612 (2012).

    • Article
    • Google Scholar
  • 18.

    Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 1322, 21–34 (2014).

  • 19.

    Eichhorn, J. et al. Assessment of drought resistance of beech exemplified by the 2003 extreme weather conditions. Ergebnisse angewandter Forschung zur Buche. 109–134. (Universitätsverlag Göttingen, 2008).

  • 20.

    Stephenson, A. G. Flower and fruit abortion: proximate causes and ultimate functions. Annu. Rev. Ecol. Syst. 12, 253–279 (1981).

    • Article
    • Google Scholar
  • 21.

    Goubitz, S., Werger, M. J. A., Shmida, A. & Ne’eman, G. Cone abortion in Pinus halepensis: the role of pollen quantity, tree size and cone location. Oikos 97, 125–133 (2002).

    • Article
    • Google Scholar
  • 22.

    Isagi, Y., Sugimura, K., Sumida, A. & Ito, H. How does masting happen and synchronize? J. Theoret. Biol. 187, 231–239 (1997).

    • Article
    • Google Scholar
  • 23.

    Satake, A. & Iwasa, Y. Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J. Theoret. Biol. 203, 63–84 (2000).

  • 24.

    Venner, S. et al. Fruiting strategies of perennial plants: a resource budget model to couple mast seeding to pollination efficiency and resource allocation strategies. Am. Nat. 188, 66–75 (2016).

    • Article
    • Google Scholar
  • 25.

    Di Liberto, T. A hot, dry summer has led to drought in Europe in 2018, https://www.climate.gov/news-features/event-tracker/hot-dry-summer-has-led-drought-europe-2018 (2018).

  • 26.

    Rigling, A. et al. Wie viel Trockenheit ertragen unsere Wälder? Lehren aus extremen Trockenjahren. Forum für Wissen 78, 39–51 (2019).

    • Google Scholar
  • 27.

    MeteoSwiss. Hitze und Trockenheit im Sommerhalbjahr 2018 – eine klimatologische Übersicht. In: Fachbericht MeteoSchweiz 272, (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2018).

  • 28.

    MeteoSwiss. Klimareport 2018. (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2019).

  • 29.

    BFS Swiss Federal Statistical Office. Swiss Forestry Statistics 2018, https://www.bfs.admin.ch/bfs/en/home/statistics/agriculture-forestry.gnpdetail.2019-0446.html (2019).

  • 30.

    Schaub, M., Dobbertin, M., Kräuchi, N. & Kaennel Dobbertin, M. Preface—long-term ecosystem research: understanding the present to shape the future. Environ. Monit. Assess. 174, 1–2, https://doi.org/10.1007/s10661-010-1756-1 (2011).

  • 31.

    Williamson, M. J. Premature abscissions and white oak acorn crops. For. Sci. 12, 19–21 (1966).

    • Google Scholar
  • 32.

    Bogdziewicz, M. et al. From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecol. Lett. 23, 210–220 (2020).

    • Article
    • Google Scholar
  • 33.

    MeteoSwiss. Klimareport 2013. (Swiss Federal Office of Meteorology and Climatology, Zürich, Switzerland, 2014).

  • 34.

    Dittmar, C., Zech, W. & Elling, W. Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. For. Ecol. Manag. 173, 63–78 (2003).

    • Article
    • Google Scholar
  • 35.

    Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A. & Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 14, 1–17 (2008).

    • Article
    • Google Scholar
  • 36.

    Scharnweber, T., Manthey, M. & Wilmking, M. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Tree Physiol. 33, 425–437 (2013).

    • Article
    • Google Scholar
  • 37.

    Waring, R. H. Characteristics of trees predisposed to die. BioScience 37, 569–574 (1987).

    • Article
    • Google Scholar
  • 38.

    Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333 (2005).

    • Article
    • Google Scholar
  • 39.

    Lavee, S. Biennial bearing in olive (Olea europaea). Annales, Series Hist. Nat. 17, 101–112 (2007).

    • Google Scholar
  • 40.

    Lorenz, R., Stalhandske, Z. & Fischer, E. M. Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett. 46, 8363–8374 (2019).

  • 41.

    CH2018. CH2018 – Climate Scenarios for Switzerland. Technical Report. National Centre for Climate Services (2018).

  • 42.

    Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013).

  • 43.

    MeteoSwiss. Pollen monitoring network, https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/land-based-stations/pollen-monitoring-network.html (2020).

  • 44.

    Ukonmaanaho, L., Pitman, R., Bastrup-Birk, A., Breda, N. & Rautio, P. Part XIII: Sampling and Analysis of Litterfall. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).

  • 45.

    Rebetez, M. et al. Meteorological data series from Swiss long-term forest ecosystem research plots since 1997. Ann. For. Sci. 75, 41–48 (2018).

    • Article
    • Google Scholar
  • 46.

    Thimonier, A. et al. Total deposition of nitrogen in Swiss forests: comparison of assessment methods and evaluation of changes over two decades. Atmos. Environ. 198, 335–350 (2019).

  • 47.

    Raspe, S., Beuker, E., Preuhsler, T. & Bastrup-Birk, A. Part IX: Meteorological Measurements. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).

  • 48.

    Clarke, N. et al. Part XIV: Sampling and Analysis of Deposition. (ed. UNECE ICP Forests Programme Co-ordinating Centre) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests (Thünen Institute for Forest Ecosystems, Eberswalde, Germany, 2016).

  • 49.

    Graf Pannatier, E., Thimonier, A., Schmitt, M., Walthert, L. & Waldner, P. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: Can we observe trends in atmospheric acid deposition and in soil solution acidity? Environ. Monit. Assess. 174, 3–30, https://doi.org/10.1007/s10661-010-1754-3 (2011).

  • 50.

    Gehrig, R. Representativeness of pollen traps: a review of the national pollen network of Switzerland. Aerobiologia 35, 577–581 (2019).

    • Article
    • Google Scholar
  • 51.

    Galán, C. et al. Recommended terminology for aerobiological studies. Aerobiologia 33, 293–295 (2017).

    • Article
    • Google Scholar
  • 52.

    Krivoruchko, K. & Gribov, A. Pragmatic Bayesian Kriging for Non-Stationary and Moderately Non-Gaussian Data. Mathematics of Planet Earth, 61–64 (Berlin, Heidelberg, 2014).

  • 53.

    Wüest, R. O., Bergamini, A., Bollmann, K. & Baltensweiler, A. LiDAR data as a proxy for light availability improve distribution modelling of woody species. For. Ecol. Manag. 456, 117644, https://doi.org/10.1016/j.foreco.2019.117644 (2019).

    • Article
    • Google Scholar
  • 54.

    R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2019).

  • 55.

    Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).

    • Article
    • Google Scholar
  • 56.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer Verlag, New York, 2002).

  • 57.

    Barton, K. MuMIn: Multi-model inference. R package version 1.40.0 (2017).

  • 58.

    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. (Thousand Oaks CA: Sage, 2019).

  • 59.

    Zeileis, A. & Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2(3), 7–10 (2002).

    • Google Scholar

  • Source: Ecology - nature.com

    Understanding the impact of climate change on the ocean

    Water and health interlinkages of the sustainable development goals in remote Indigenous Australia