in

GIS-based modelling reveals the fate of antlion habitats in the Deliblato Sands

  • 1.

    Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005).

    • Article
    • Google Scholar
  • 2.

    Werger, M. J. A. & van Staalduinen, M. A. Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht (2012).

  • 3.

    Cremene, C. et al. Alterations of steppe-like grasslands in Eastern Europe: a threat to regional biodiversity hotspots. Conserv. Biol. 19, 1606–1618 (2005).

    • Article
    • Google Scholar
  • 4.

    Wittig, B., Richter, Gen, Kammermann, A. & Zacharias, D. An indicator species approach for result-oriented subsides of ecological services in grasslands–a study in Northwestern Germany. Biol. Conserv. 19, 81–95 (2006).

    • Google Scholar
  • 5.

    de Bello, F., Lavorel, S., Gerhold, P., Reier, Ü. & Pärtel, M. A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol. Conserv. 143, 9–17 (2010).

    • Article
    • Google Scholar
  • 6.

    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Env. 182, 1–14 (2014).

    • Article
    • Google Scholar
  • 7.

    Habel, J. C. et al. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138 (2013).

    • Article
    • Google Scholar
  • 8.

    Bátori, Z. et al. Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic. Biodivers. Conserv. 27, 1011–1030 (2018).

    • Article
    • Google Scholar
  • 9.

    Kryštufek, B. Phenetic variation in the European souslik, Spermophilus citellus (Mammalia: Rodentia). Bonn. zool. Beitr. 46, 93–109 (1996).

    • Google Scholar
  • 10.

    Coroiu, C., Kryštufek, B., Vohralík, V. & Zagorodnyuk, I. Spermophilus citellus. The IUCN Red List of Threatened Species 2008: e.T20472A9204055, https://doi.org/10.2305/IUCN.UK.2008.RLTS.T20472A9204055.en, Downloaded on 29 November 2018 (2008).

  • 11.

    Palacín, C. & Alonso, J. C. An updated estimate of the world status and population trends of the great bustard Otis tarda. Ardeola 55, 13–25 (2008).

    • Google Scholar
  • 12.

    Cizek, L., Hauck, D. & Pokluda, P. Contrasting needs of grassland dwellers: habitat preferences of endangered steppe beetles (Coleoptera). J. Insect Conserv. 16, 281–293 (2012).

    • Article
    • Google Scholar
  • 13.

    Pokluda, P., Hauck, D. & Cizek, L. Importance of marginal habitats for grassland diversity: fallows and overgrown tall-grass steppe as key habitats of endangered ground-beetle Carabus hungaricus. Insect Conserv. Diversity 5, 27–36 (2012).

    • Article
    • Google Scholar
  • 14.

    Anderson, A., Carnus, T., Helden, A. J., Sheridan, H. & Purvis, G. The influence of conservation field margins in intensively managed grazing land on communities of five arthropod trophic groups. Insect Conserv. Diversity 6, 201–211 (2013).

    • Article
    • Google Scholar
  • 15.

    Van Swaay, C. A. M. The importance of calcareous grasslands for butterflies in Europe. Biol. Conserv. 104, 315–318 (2002).

  • 16.

    WallisDeVries, M. F., Poschlod, P. & Willems, J. H. Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol. Conserv. 104, 265–273 (2002).

    • Article
    • Google Scholar
  • 17.

    Woodcock, B. A. & Pywell, R. F. Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands. Biodivers. Conserv. 19, 81–95 (2010).

    • Article
    • Google Scholar
  • 18.

    Gepp J. Ameisenlöwen und Ameisenjungfern, Myrmeleontidae. Westarp Wissenschaften, Hohenwarsleben, (2010).

  • 19.

    Binot, M., Bless, R., Boye, P., Gruttke, H. & Pretscher, P. (eds) Rote Liste gefährdeter Tiere Deutschlands. Schriftenreihe für Landschaftspflege und Naturschutz 55, Bonn-Bad Godesberg, (1998).

  • 20.

    Zulka, K.P. Rote Listen gefährdeter Tiere Österreichs. Checklisten, Gefährdungsanalysen, Handlungsbedarf. Teil 1: Säugetiere, Vögel, Heuschrecken, Wasserkäfer, Netzflügler, Schnabelfliegen, Tagfalter. Grüne Reihe des Lebensministeriums, Band 14/1. Böhlau Verlag, Wien. (2005).

  • 21.

    Anonymous. Habsburg Empire (1806–1869) – Second Military Survey of the Habsburg Empire: https://mapire.eu/en/browse/country/secondsurvey/, Accessed on 31 August 2018

  • 22.

    Anonymous. Habsburg Empire (1763–1787) – First Military Survey, https://mapire.eu/en/browse/country/firstsurvey/, Accessed on 31 August 2018.

  • 23.

    Španović, T. Deliblatski pijesak. Les sables de Deliblato. Šumarski List. – Rev. Forestière 60, 27–46 (1936a).

    • Google Scholar
  • 24.

    Španović, T. Deliblatski pijesak. Svršetak. Les sables de Deliblato. Suite et fin. Šumarski List. – Rev. Forestière 60, 583–631 (1936b).

    • Google Scholar
  • 25.

    Gepp, J. Neuropteren als Indikatoren der Naturraumbewertung. Eignung als Modellgruppe, Methodenwahl, Fallbeispiele sowie Diskussion möglicher Fragestellungen (Neuropterida). Stapfia 138, 167–208 (1999).

    • Google Scholar
  • 26.

    Mansell, M. W. & Erasmus, B. F. N. Southern African biomes and the evolution of Palparini (Insecta: Neuroptera: Myrmeleontidae). Acta Zool Acad Sci Hung 48(Suppl 2), 175–184 (2002).

  • 27.

    Mansell, M. W. The ant-lions of southern Africa: genus Pamexis Hagen (Neuroptera: Myrmeleontidae: Palparinae: Palparini). Syst. Entomol. 17, 65–78 (2002a).

    • Article
    • Google Scholar
  • 28.

    Freitag, S. & Mansell, M. W. The distribution and protection status of selected antlion species (Neuroptera: Myrmeleontidae) in South Africa. Afr. Entomol. 5, 205–216 (1997).

    • Google Scholar
  • 29.

    Mansell, M. W. Monitoring lacewings (Insecta: Neuroptera) in southern Africa. Acta Zool. Acad. Sci. Hung. 48(Suppl 2), 165–173 (2002b).

    • ADS
    • Google Scholar
  • 30.

    Wedding, L. M., Maxwell, S. M., Hyrenbach, D. & Dunn, D. C. and others. Geospatial approaches to support pelagic conservation planning and adaptive management. Endang Species Res. 30, 1–9, https://doi.org/10.3354/esr00716 (2016).

    • Article
    • Google Scholar
  • 31.

    Brown, J. L. & Yoder, A. D. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol. Evol. 5, 1131–1142, https://doi.org/10.1002/ece3.1418 (2015).

  • 32.

    Walston, L. J. & Hartmann, H. M. Development of a landscape integrity model framework to support regional conservation planning. PLoS One 13(4), e0195115, https://doi.org/10.1371/journal.pone.0195115 (2018).

  • 33.

    Stange, L. A. A systematic catalog, bibliography and classification of the world antlions (Insecta: Neuroptera: Myrmeleontidae). Mem. Am. Entomol. Inst. 74, 1–565 (2004).

    • Google Scholar
  • 34.

    Badano, D. & Pantaleoni, R. A. The larvae of European Myrmeleontidae (Neuroptera). Zootaxa 3762, 1–71 (2014).

    • Article
    • Google Scholar
  • 35.

    Aspöck, H., Aspöck, U., Hölzel, H., Rausch, H. Die Neuropteren Europas. 2 Vols. Goecke & Evers, Krefeld, (1980).

  • 36.

    Eastman, J. R. TerrSet. Worcester, Clark University, (2017).

  • 37.

    Sanderson, B. M., Knutti, R. & Caldwell, P. A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble. J. Clim. 28, 5171–5194 (2015).

  • 38.

    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Env. 8, 27–150 (1979).

    • Google Scholar
  • 39.

    Gallo, K. P., Owen, T. W., Easterling, D. R. & Jamason, P. F. Temperature trends of the U.S. Historical Climatology Network based on satellite-designated land use/land cover. J Climate 12, 1344, doi:10.1175/1520- 0442(1999)012<2.0.CO;2 (1999).

  • 40.

    ESRI. ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute, Redlands, (2018).

  • 41.

    Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Env. 4, 94–98 (2009).

    • Google Scholar
  • 42.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL, http://www.R-project.org/ (2013).

  • 43.

    Jenness, J. Repeating shapes for ArcGIS. Jenness Enterprises. Available at, http://www.jennessent.com/arcgis/repeat_shapes.htm (2012).

  • 44.

    Nosetto, M. D., Jobbágy, E. G. & Paruelo, J. M. Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob. Change Biol. 11, 1101–1117, https://doi.org/10.1111/j.1365-2486.2005.00975.x (2005).

  • 45.

    Kaligarič, M., Čuš, J., Škornik, S. & Ivajnšič, D. The failure of agri-environment measures to promote and conserve grassland biodiversity in Slovenia. Land. use policy 80, 127–134 (2019).

    • Article
    • Google Scholar
  • 46.

    Duelli, P. & Obrist, M. K. Biodiversity indicators: the choice of values and measures. Agric. Ecosyst. Env. 98, 87–98 (2003).

    • Article
    • Google Scholar
  • 47.

    Pipenbaher, N., Kaligarič, M., Mason, N. W. H. & Škornik, S. Dry calcareous grasslands from two neighboring biogeographic regions: relationship between plant traits and rarity. Biodivers. Conserv. 22(10), 2207–2221 (2013).

    • Article
    • Google Scholar
  • 48.

    Brtek, J. Príspevok k poznatkom o rozšírení mravcolevov na Slovensku. Acta rer nat. Mus. slov. 7, 119–124 (1961).

    • Google Scholar
  • 49.

    Grozdanić, S. & Stevanović, A. Beitrag zur Kenntnis der Ameisenlöwen in Jugoslawien. Bull. Acad. Serbe Sci. Arts, Cl. Sci Math. Nat. 6(12), 69–71 (1969).

    • Google Scholar
  • 50.

    Sziráki, G., Ábrahám, L., Szentkirályi, F. & Papp, Z. A check-list of the Hungarian Neuropteroidea (Megaloptera, Raphidioptera, Planipennia). Folia Entomol. Hung. 52, 113–118 (1992).

    • Google Scholar
  • 51.

    Szentkirályi, F. & Kazinczy, L. Seasonal flight patterns of antlions (Neuroptera, Myrmeleontidae) monitored by the Hungarian light trap network. Acta Zool. Acad. Sci. Hung. 48(Suppl 2), 311–328 (2002).

    • Google Scholar
  • 52.

    Dobosz, R. Myrmeleon (Morter) inconspicuus Rambur, 1842. Mrówkolew południowy. In: Głowaciński, Z. & Nowacki J. (eds.) Polska Czerwona Księga Zwierząt. Bezkręgowce, IOP PAN Kraków & AR Poznań, p 86, (2004b).

  • 53.

    Ábrahám, L. Natural protection studies on the neuropteroids (Megaloptera, Raphidioptera, Neuroptera) fauna of the Duna-Dráva National Park, II. Dunántúli Dolgozatok Természetudományi Sor. 9, 53–70 (1998).

    • Google Scholar
  • 54.

    Blaik, T. & Dobosz, R. Lacewings (Neuroptera) of the Polish Baltic coast with remarks on Wesmaelius (Kimminsia) balticus (Tjeder, 1931) – a new species of Hemerobiidae to the fauna of Poland. In: Devetak, D., Lipovšek, S. & Arnett, A. E. (eds.) Proceedings of the Tenth International Symposium on Neuropterology, 2008. FNM, Maribor, pp 97–112, (2010).

  • 55.

    Szentkirályi, F., Markó, V., Kazinczy, L., Kovács, É. When the antlions fall into a pit: pitfall trappings in sandy grasslands. In: Devetak, D., Lipovšek, S., Arnett, A. E. (eds.) Proceedings of the Tenth International Symposium on Neuropterology, 2008. FNM, Maribor, pp 277–286, (2010).

  • 56.

    Denner, F. Myrmeleon bore (Tjeder, 1941) und Myrmeleon inconspicuus Rambur, 1842 (Neuroptera: Myrmeleontidae) neu für Niederösterreich. Beitr. Entomofaun 16, 21–29 (2015).

    • Google Scholar
  • 57.

    Ábrahám, L. Checklist of the neuropteroid fauna of Somogy county (Megaloptera, Raphidioptera, Neuroptera). Nat. Somogyiensis 1, 253–260 (2001).

    • Google Scholar
  • 58.

    Dobosz, R. Two species of lacewings (Neuropteroidae) from Białowieża Primaeval Forest new to the fauna of Poland. Acta Entomol. Siles 4, 19–23 (1996).

    • Google Scholar
  • 59.

    Devetak, D. Palpares libelluloides (Linnaeus, 1764) in the northwestern part of the Balkan Peninsula (Neuroptera: Myrmeleontidae). Annales, Annals for Istrian and Mediterranean. Studies 9, 211–216 (1996).

    • Google Scholar
  • 60.

    Kadović, R., Spasov, P., Ali Bohajar, Y. M., Belanović Simić, S. & Košanin, O. Analysis of aridity indicators in the Deliblato Sands. Bull. Fac. For. 109, 97–112 (2014).

    • Google Scholar
  • 61.

    Feurdean, A., Ruprecht, E., Molnár, Z., Hutchinson, S. M. & Hickler, T. Biodiversity-rich European grasslands: ancient, forgotten ecosystems. Biol. Conserv. 228, 224–232 (2018).

    • Article
    • Google Scholar
  • 62.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

  • 63.

    Bond, W. J. & Archibald, S. Confronting complexity: fire policy choices in South African savanna parks. Int. J. Wildl. Fire 12, 381–389 (2003).

    • Article
    • Google Scholar
  • 64.

    Valkó, O. et al. Supporting biodiversity by prescribed burning in grasslands — A multi-taxa approach. Sci. Total. Env. 572, 1377–1384 (2016).

  • 65.

    Pipenbaher, N., Škornik, S., Carvalho, G. H. & Batalha, M. A. Phylogenetic and functional relationships in pastures and meadows from the North Adriatic Karst. Plant. Ecol. 214(4), 501–519 (2013).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Understanding the impact of climate change on the ocean

    Water and health interlinkages of the sustainable development goals in remote Indigenous Australia