in

The nature of deep overturning and reconfigurations of the silicon cycle across the last deglaciation

  • 1.

    Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

  • 2.

    Toggweiler, J. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography, 14. (1999).

  • 3.

    Jacobel, A. W. et al. Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles. Nat. Commun. 8, 1727 (2017).

  • 4.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    • Article
    • Google Scholar
  • 5.

    Skinner, L. C. et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

  • 6.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

  • 7.

    Siani, G. et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat. Commun. 4, 2758 (2013).

  • 8.

    Rae, J. W. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 592, 569–573 (2018).

  • 9.

    Sarmiento, J. L. et al. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

  • 10.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

  • 11.

    Skinner, L. C. & Shackleton, N. J. An Atlantic lead over Pacific deep-water change across Termination I: implications for the application of the marine isotope stage stratigraphy. Quat. Sci. Rev. 24, 571–580 (2005).

  • 12.

    Lisiecki, L. E. & Raymo, M. E. Diachronous benthic δ18O responses during late Pleistocene terminations. Paleoceanography 24, 1–14 (2009).

    • Article
    • Google Scholar
  • 13.

    Stern, J. V. & Lisiecki, L. E. Termination 1 timing in radiocarbon-dated regional benthic δ18O stacks. Paleoceanography 29, 1127–1142 (2014).

  • 14.

    Sikes, E. L., Allen, K. A. & Lund, D. C. Enhanced δ13C and δ18O differences between the South Atlantic and South Pacific during the last glaciation: the deep gateway hypothesis. Paleoceanography 32, 1000–1017 (2017).

  • 15.

    Zhao, N. et al. A synthesis of deglacial deep-sea radiocarbon records and their (In)consistency with modern Ocean ventilation. Paleoceanogr. Paleoclimatology 33, 128–151 (2018).

  • 16.

    Bostock, H. C. et al. Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation. Paleoceanography 19, 1–15 (2004).

    • Article
    • Google Scholar
  • 17.

    Jaccard, S. L. & Galbraith, E. D. Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation. Geophys. Res. Lett. 40, 199–203 (2013).

  • 18.

    Sikes, E. L. et al. Glacial water mass structure and rapid δ18O and δ13C changes during the last glacial termination in the Southwest Pacific. Earth Planet. Sci. Lett. 456, 87–97 (2016).

  • 19.

    Clementi, V. J. & Sikes, E. L. Southwest pacific vertical structure influences on Oceanic carbon storage since the last glacial maximum. Paleoceanogr. Paleoclimatology 34, 734–754 (2019).

    • Google Scholar
  • 20.

    Egge, J. & Aksnes, D. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83, 281–289 (1992).

  • 21.

    Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

  • 22.

    Buesseler, K. The decoupling of production and particulate export in the surface ocean. Glob. Biogeochem. Cycles 12, 297–310 (1998).

  • 23.

    Sigman, D. M. & Boyle, E. A. Glacial/interglacial variation in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

  • 24.

    Matsumoto, K. & Sarmiento, J. L. A corollary to the silicic acid leakage hypothesis. Paleoceanography 23, 2 (2008).

    • Article
    • Google Scholar
  • 25.

    Ragueneau, O. et al. Si/C decoupling in the world ocean: Is the Southern Ocean different? Deep-Sea Res. Ii. 49, 3127–3154 (2002).

  • 26.

    De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Acta 61, 5051–5056 (1997).

  • 27.

    Egan, K. E. et al. Diatom silicon isotopes as a proxy for silicic acid utilisation: a Southern Ocean core top calibration. Geochimica Cosmochimica Acta 96, 174–192 (2012).

  • 28.

    De La Rocha, C. L. et al. Silicon-isotope composition of diatoms as an indicator of diatoms as an indicator of past oceanic change. Nature 395, 28–31 (1998).

    • Article
    • Google Scholar
  • 29.

    Hendry, K. R. & Robinson, L. F. The relationship between silicon isotope fractionation in sponges and silicic acid concentration: Modern and core-top studies of biogenic opal. Geochimica Cosmochimica Acta 81, 1–12 (2012).

  • 30.

    Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).

  • 31.

    Cardinal, D. et al. Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Glob. Biogeochem. Cycles. 19, GB2007 (2005).

  • 32.

    Fripiat, F. et al. Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes. Ocean Sci. 7, 533–547 (2011).

  • 33.

    Beucher, C. P., Brzezinski, M. A. & Crosta, X. Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Glob. Biogeochem. Cycles 21, 1–13 (2007).

  • 34.

    Horn, M. G. et al. Southern Ocean nitrogen and silicon dynamics during the last deglaciation. Earth Planet. Sci. Lett. 310, 334–339 (2011).

  • 35.

    Robinson, R. S. et al. The changing roles of iron and vertical mixing in regulating nitrogen and silicon cycling in the Southern Ocean over the last glacial cycle. Paleoceanography 29, 1179–1195 (2014).

  • 36.

    Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 3–6 (2002).

    • Article
    • Google Scholar
  • 37.

    Sutton, J. N. et al. Species-dependent silicon isotope fractionation by marine diatoms. Geochimica Cosmochimica Acta 104, 300–309 (2013).

  • 38.

    Francois, R. et al. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004).

  • 39.

    Dézileau, L., Reyss, J. L. & Lemoine, F. Late Quaternary changes in biogenic opal fluxes in the Southern Indian Ocean. Mar. Geol. 202, 143–158 (2003).

  • 40.

    Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

  • 41.

    Martínez-García, A. et al. Iron fertilization of the Subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

  • 42.

    Fripiat, F. et al. Diatom-induced silicon isotopic fractionation in Antarctic sea ice. J. Geophys. Res. Biogeosci. 112, G02001 (2007).

  • 43.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

  • 44.

    Abelmann, A. et al. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nat. Commun. 6, 8136 (2015).

  • 45.

    Hendry, K. R. et al. Abrupt changes in high-latitude nutrient supply to the Atlantic during the last glacial cycle. Geology 40, 123–126 (2012).

  • 46.

    Meckler, A. N. et al. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature 495, 495–498 (2013).

  • 47.

    Ellwood, M. J., Wille, M. & Maher, W. Glacial silicic acid concentrations in the Southern. Ocean. Sci. 330, 1088–1091 (2010).

    • CAS
    • Google Scholar
  • 48.

    Sarmiento, J. L. et al. Deep ocean biogeochemistry of silicic acid and nitrate. Glob. Biogeochem. Cycles 21, 1–16 (2007).

  • 49.

    De Souza, G. F. et al. Silicon stable isotope distribution traces Southern Ocean export of Si to the eastern South Pacific thermocline. Biogeosci 9, 4199–4213 (2012).

  • 50.

    Pichevin, L. E. et al. Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean. Nature 459, 1114–1117 (2009).

  • 51.

    Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 1–12 (2016).

    • ADS
    • Google Scholar
  • 52.

    Du, J. et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).

  • 53.

    Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).

  • 54.

    Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

  • 55.

    Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, 1–12 (2005).

    • Article
    • Google Scholar
  • 56.

    Liu, W. et al. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum. Clim. Dyn. 45, 3157–3168 (2015).

    • Article
    • Google Scholar
  • 57.

    Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).

  • 58.

    McCave, I. N., Carter, L. & Hall, I. R. Glacial-interglacial changes in water mass structure and flow in the SW Pacific Ocean. Quat. Sci. Rev. 27, 1886–1908 (2008).

  • 59.

    Ferry, A. J. et al. First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean. Paleoceanography 30, 1525–1539 (2015).

  • 60.

    Pedro, J. B. et al. The spatial extent and dynamics of the Antarctic Cold Reversal. Nat. Geosci. 9, 51–55 (2015).

  • 61.

    Xiao, W., Esper, O. & Gersonde, R. Last Glacial—Holocene climate variability in the Atlantic sector of the Southern Ocean. Quat. Sci. Rev. 135, 115–137 (2016).

  • 62.

    Mayr, C. et al. Intensified Southern Hemisphere Westerlies regulated atmospheric CO2 during the last deglaciation. Geology 41, 831–834 (2013).

  • 63.

    Jones, D. C. et al. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 28, 1163–1178 (2014).

  • 64.

    McManus, J. F. et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

  • 65.

    Barker, S. et al. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 3, 567–571 (2010).

  • 66.

    Ayers, J. M. & Strutton, P. G. Nutrient variability in Subantarctic Mode Waters forced by the Southern Annular Mode and ENSO. Geophys. Res. Lett. 40, 3419–3423 (2013).

  • 67.

    Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16, 1031 (2002).

  • 68.

    Harrison, G. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15, 292–298 (2000).

  • 69.

    Dugdale, R. C. et al. Influence of equatorial diatom processes on Si deposition and atmospheric CO2 cycles at glacial/interglacial timescales. Paleoceanography 19, PA3011 (2004).

  • 70.

    Romero, O. et al. Oscillations of the siliceous imprint in the central Benguela Upwelling System from MIS 3 through to the early Holocene: the influence of the Southern Ocean. J. Quat. Sci. 18, 733–743 (2003).

    • Article
    • Google Scholar
  • 71.

    Romero, O., Kim, J.-H. & Donner, B. Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the last glacial cycle. Paleoceanography, 23, PA3218 (2008).

  • 72.

    Bradtmiller, L. I. et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography 22, PA4216 (2007).

  • 73.

    Maier, E. et al. Deglacial subarctic Pacific surface water hydrography and nutrient dynamics and links to North Atlantic climate variability and atmospheric CO2. Paleoceanography 30, 949–968 (2015).

  • 74.

    Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6, 1072–1079 (2016).

  • 75.

    Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).

  • 76.

    Bradtmiller, L. I. et al. Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography 24, 1–20 (2009).

    • Article
    • Google Scholar
  • 77.

    Matsumoto, K., Chase, Z. & Kohfeld, K. Different mechanisms of silicic acid leakage and their biogeochemical consequences. Paleoceanography 29, 238–254 (2014).

  • 78.

    Jochum, K. P. et al. Whole-Ocean changes in silica and Ge/Si ratios during the last deglacial deduced from long-lived giant glass sponges. Geophys. Res. Lett. 4, 11555–11564 (2017).

  • 79.

    Frings, P. J. et al. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425, 12–36 (2016).

  • 80.

    Francois, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

  • 81.

    Chase, Z. et al. Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep Sea Res. II 50, 799–832 (2003).

  • 82.

    Zhang, Y. G. et al. A 40-million-year history of A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A 371, 20130096 (2016).

  • 83.

    Renaudie, J. Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosciences 13, 6003–6014 (2016).

  • 84.

    Morley, D. W. et al. Cleaning of lake sediment samples for diatom oxygen isotope analysis. J. Paleolimnol. 31, 391–401 (2004).

  • 85.

    Georg, R. B. et al. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104 (2006).

  • 86.

    Mortlock, R. & Froelich, P. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res. A 36, 1415–1426 (1989).

  • 87.

    Anderson, R. F. & Fleer, A. P. Determination of natural actinides and plutonium in marine particulate material. Anal. Chem. 54, 1142–1147 (1982).

  • 88.

    Martínez-Garcia, A. et al. Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma. Paleoceanography, 24. (2009).

  • 89.

    Negre, C. et al. Separation and measurement of Pa, Th, and U isotopes in marine sediments by microwave-assisted digestion and multiple collector inductively coupled plasma mass. Anal. Chem. 81, 1914–1919 (2009).

  • 90.

    Kretschmer, S. et al. Fractionation of 230Th, 231Pa, and 10Be induced by particle size and composition within an opal-rich sediment of the Atlantic Southern Ocean. Geochimica Cosmochimica Acta 75, 6971–6987 (2011).

  • 91.

    Dumont, M. et al. Deglacial diatom and sponge silicon isotope records from cores MD84-551, MD88-773 and MD88-772. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.911189 (2020).

  • 92.

    Orsi, A., Whitworth, T. & Nowlin, W. On the meridional extent and fronts of the Antarctic Circumpolar. Curr. Deep Sea Res. I 42, 641–673 (1995).

    • Article
    • Google Scholar
  • 93.

    Garcia, H. E. et al.in World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate). (eds Levitus, S., Mishonov, A. V.) (NOAA Atlas NESDIS 76, 2013).

  • 94.

    Schlitzer, R. Interactive analysis and visualization of geoscience data with Ocean Data View. Comput. Geosci. 28, 1211–1218 (2002).

  • 95.

    Rousseau, J. et al. Estimates of late Quaternary mode and intermediate water silicic acid concentration in the Pacific Southern Ocean. Earth Planet. Sci. Lett. 439, 101–108 (2016).


  • Source: Ecology - nature.com

    Understanding the impact of climate change on the ocean

    Water and health interlinkages of the sustainable development goals in remote Indigenous Australia