in

Evaluation of Stratiolaelaps scimitus (Acari: Laelapidae) for controlling the root-knot nematode, Meloidogyne incognita (Tylenchida: Heteroderidae)

  • 1.

    Chaudhary, S., Dutta, T. K., Shivakumara, T. N. & Rao, U. RNAi of esophageal gland-specific gene Mi-msp-1 alters early stage infection behaviour of root-knot nematode, Meloidogyne incognita. Journal of General Plant Pathology 85(3), 232–242, https://doi.org/10.1007/s10327-019-00837-x (2019).

  • 2.

    Sun, S. W. & Sang, L. W. Advances in research on root knot nematode prevention. Modern Agricultural Sciences and Technology 11, 181–182; CNKI: SUN: ANHE.0.2008-11-116 (in Chinese) (2008).

  • 3.

    Ragozzino, A. & d’Errico, G. Interactions between nematodes and fungi: A concise review. Redia 94, 123–125 (2011).

    • Google Scholar
  • 4.

    Moens, M., Perry, R. N. & Starr, J. L. Meloidogyne Species- a Diverse Group of Novel and Important Plant Parasites in Root-knot Nematodes (eds. Perry, R. N., Moens, M. & Starr, J. L.). 1–13, https://doi.org/10.1079/9781845934927.0001 (Cambridge, 2009).

  • 5.

    Zhao, H., Peng, D. L. & Zhu, J. L. Reviews on the root-knot nematodes. Plant Protection 29(12), 6–10 (in Chinese) (2003).

  • 6.

    Huang, W. K. et al. Efficacy Evaluation of Fungus Syncephalastrum racemosum and nematicide avermectin against the root-knot nematode Meloidogyne incognita on cucumber. PLoS One 9(2), e89717, https://doi.org/10.1371/journal.pone.0089717 (2014).

  • 7.

    Anwar, S. A. & Mc Kenry, M. V. Incidence and reproduction of Meloidogyne incognita on vegetable crop genotypes. Pakistan Journal of Zoology 42(2), 135–141, https://doi.org/10.2984/64.2.349 (2010).

    • Article
    • Google Scholar
  • 8.

    Xu, C. L. et al. Evaluation of Blattisocius dolichus (Acari: Blattisociidae) for biocontrol of root-knot nematode, Meloidogyne incognita (Tylenchida: Heteroderidae). BioControl 59(5), 617–624, https://doi.org/10.1007/s10526-014-9581-z (2014).

  • 9.

    Gupta, R. C. Introduction in Toxicology of Organophosphate and Carbamate Compounds (ed. Gupta, R. C.) 3-4 (Burlington, 2011).

  • 10.

    Jones, J. G. Examination of chemical, biological, and cultural control measures of root-knot nematodes in lima beans. University of Delaware (2016).

  • 11.

    Dababat, A. A., Sikora, R. A. & Hauschild, R. Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Communications in agricultural and applied biological sciences 71(3 Pt B), 953–961 (2006).

    • CAS
    • Google Scholar
  • 12.

    Bhuiyan, S. A., Garlick, K., Anderson, J. M., Wickramasinghe, P. & Stirling, G. R. Biological control of root-knot nematode on sugarcane in soil naturally or artificially infested with Pasteuria penetrans. Australasian Plant Pathology 47(1), 45–52, https://doi.org/10.1007/s13313-017-0530-z (2017).

  • 13.

    Mekete, T., Hallmann, J., Sikora, R. & Kiewnick, S. Endophytic bacteria from Ethiopian coffee plants and their potential to antagonise Meloidogyne incognita. Nematology 11(1), 117–127, https://doi.org/10.1163/156854108X398462 (2009).

    • Article
    • Google Scholar
  • 14.

    Cetintas, R., Kusek, M. & Fateh, S. A. Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egyptian Journal of Biological Pest Control 28(1), 7, https://doi.org/10.1186/s41938-017-0008-x (2018).

    • Article
    • Google Scholar
  • 15.

    Oliveira, A. R., de Moraes, G. J. & Ferraz, L. C. C. B. Consumption rate of phytonematodes by Pergalumna sp. (Acari: Oribatida: Galumnidae) under laboratory conditions determined by a new method. Experimental and applied acarology 41(3), 183–189, https://doi.org/10.1007/s10493-007-9062-5 (2007).

    • Article
    • Google Scholar
  • 16.

    Abou El-Atta, E. M., Ghazy, N. A. & Osman, M. A. Effects of temperature on the life-history traits of Sancassania (Caloglyphus) berlesei (Acari: Astigmatina: Acaridae) feeding on root-knot nematodes, Meloidogyne spp. (Nematoda: Meloidogynidae). Experimental and Applied Acarology 64(3), 299–307, https://doi.org/10.1007/s10493-014-9826-7 (2014).

    • Article
    • Google Scholar
  • 17.

    Abou El-Atta, E. M. & Osman, M. A. Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets. Experimental and Applied Acarology 68(4), 477–483, https://doi.org/10.1007/s10493-015-0002-5 (2016).

  • 18.

    Zhou, W. Q. et al. The Predatory mite Neoseiulus barkeri (Acari: Phytoseiidae), a New Biocontrol Approach for Plant-parasitic Nematode, and Associated Development and Reproduction. Chinese Journal of Biological Control 4, 484–489, https://doi.org/10.3969/j.issn.2095-039X.2012.04.007, (in Chinese) (2012).

  • 19.

    Yang, S. H., Zhou, W. Q., Wang, D. W., Xu, C. L. & Xie, H. Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for the control of plant parasitic nematodes, Radopholus similis (Tylenchida: Pratylenchidae) and Meloidogyne incognita (Tylenchida: Heteroderidae), Biocontrol Science and Technology 0958–3157, https://doi.org/10.1080/09583157.2019.1698713 (2019).

  • 20.

    Enkegaard, A., Sardar, M. A. & Brødsgaard, H. F. The predatory mite Hypoaspis miles: biological and demographic characteristics on two prey species, the mushroom sciarid fly, Lycoriella solani, and the mould mite, Tyrophagus putrescentiae. Entomologia Experimentalis et Applicata 82(2), 135–146, https://doi.org/10.1046/j.1570-7458.1997.00123-x (1997).

    • Article
    • Google Scholar
  • 21.

    Cabrera, A. R., Cloyd, R. A. & Zaborski, E. R. Development and reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) with fungus gnat larvae (Diptera: Sciaridae), potworms (Oligochaeta: Enchytraeidae) or Sancassania aff. sphaerogaster (Acari: Acaridae) as the sole food source. Experimental & Applied Acarology 36(1–2), 71–81, https://doi.org/10.1007/s10493-005-0242-x (2005).

  • 22.

    Wen, M. F. et al. Population characteristics of Macrocheles glaber (Acari: Macrochelidae) and Stratiolaelaps scimitus (Acari: Laelapidae) reared on a mushroom fly Coboldia fuscipes (Diptera: Scatopsidae). Insect Science 26(2), https://doi.org/10.1111/1744-7917.12511 (2017).

  • 23.

    Premachandra, W. T. S. D. et al. Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biocontrol 48(5), 529–541, https://doi.org/10.1023/a:1025703512113 (2003).

    • Article
    • Google Scholar
  • 24.

    Wu, S. et al. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Science and Technology 24(10), 1110–1121, https://doi.org/10.1080/09583157.2014.924478 (2014).

    • Article
    • Google Scholar
  • 25.

    Steiner, M., Goodwin, S. & Wellham, T. A simplified rearing method for Stratiolaelaps (Hypoaspis) miles (Acari: Laelapidae). IOBC WPRS Bulletin 22(1), 241–242 (1999).

    • Google Scholar
  • 26.

    Wang, Z. et al. Intraspecific predation between Stratiolaelaps scimitus and Hyposipis chianensis. Scientia Agricultura Sinica 43(4), 862–867, https://doi.org/10.4028/www.scientific.net/AMM.37-38.1549 (2010).

    • Article
    • Google Scholar
  • 27.

    Navarro-Campos, C., Wäckers, F. L. & Pekas, A. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Experimental and Applied Acarology 70(1), 69–78, https://doi.org/10.1007/s10493-016-0061-2 (2016).

  • 28.

    Bilgrami, A. L. Evaluation of the predation abilities of the mite Hypoaspis calcuttaensis, predaceous on plant and soil nematodes. Fundamental and Applied Nematology 20, 96–98, https://doi.org/10.1159/000157256 (1997).

    • Article
    • Google Scholar
  • 29.

    Wang, Z. Q. et al. Effect of Temperature and Relative Humidity on the Development of Stratiolaelaps scimitus. Acta Agricultural Universitatis Jiangxiensis 31(6), 1039–1043; CNKI:SUN:JXND.0.2009-06-012 (in Chinese) (2009).

  • 30.

    Lei, J. C. & Huang, H. Q. Research Advance on Biological Control of Meloidogyne incognita. Chinese Journal of Biological Control 23(9), 76–81 (in Chinese) (2007).

  • 31.

    Barker, K. R. Nematode extraction and bioassasy in An advanced treatise on Meloidogyne, Volume II Methodology (eds. Barker, K. R., Carter, J. N. & Sasser, J. N.). 19–35 (North Carolina, 1985).

  • 32.

    Hunt, D. J. & Handoo, Z. A. Taxonomy, identification and principal species in Root-knot nematodes (eds. Perry, R. N., Moens, M. & Starr, J. L.). 55–88, https://doi.org/10.1079/9781845934927.0055 (Cambridge, 2009).

  • 33.

    Chen, Y. L. et al. Evaluation of predation abilities of Blattisocius dolichus (Acari: Blattisociidae) on a plant-parasitic nematode, Radopholus similis (Tylenchida: Pratylenchidae). Experimental and Applied Acarology 60(3), 289–298, https://doi.org/10.1007/s10493-012-9650-x (2013).

    • Article
    • Google Scholar
  • 34.

    Maia, A. D. H. N., Luiz, A. J. B. & Campanhola, C. Statistical Inference on Associated Fertility Life Table Parameters Using Jackknife Technique: Computational Aspects. Journal of Economic Entomology 93(2), 511–518, https://doi.org/10.1603/0022-0493-93.2.511 (2000).

    • Article
    • Google Scholar
  • 35.

    Jiao, C. W. et al. Study on reproduction of root-knot nematodes Meloidogyne spp. inoculated to Ipomoea aquatica cultivated in sand. Journal of Northwest A & F University-Natural Science Edition 40(3), 126–130; CNKI:61-1390/S.20120223.1726.025 (in Chinese) (2012).


  • Source: Ecology - nature.com

    The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs

    The bits of wire that can devastate lion populations