in

Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks

  • 1.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

  • 2.

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641–1255641 (2015).

  • 3.

    Brose, U. et al. Predicting the consequences of species loss using size-structured biodiversity approaches. Biol. Rev. 92, 684–697 (2016).

    • Article
    • Google Scholar
  • 4.

    Heinen, J. H., Van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction-driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2017).

    • Article
    • Google Scholar
  • 5.

    Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).

    • Article
    • Google Scholar
  • 6.

    Schulze, K. et al. An assessment of threats to terrestrial protected areas. Conserv. Lett. 11, e12435–11 (2018).

    • Article
    • Google Scholar
  • 7.

    Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 1–9 (2016).

  • 8.

    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    • Article
    • Google Scholar
  • 9.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 10.

    Truchy, A., Angeler, D. G., Sponseller, R. A., Johnson, R. K. & McKie, B. G. Linking biodiversity, ecosystem functioning and services, and ecological resilience: towards an integrative framework for improved management. Adv. Ecol. Res. 53, 55–96 (2015). Academic Press.

    • Article
    • Google Scholar
  • 11.

    Schleuning, M., Fründ, J. & García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38, 380–392 (2015).

    • Article
    • Google Scholar
  • 12.

    Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).

    • Google Scholar
  • 13.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    • Article
    • Google Scholar
  • 14.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    • Article
    • Google Scholar
  • 15.

    Heilpern, S. A., Weeks, B. C. & Naeem, S. Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology 99, 1099–1107 (2018).

    • Article
    • Google Scholar
  • 16.

    Bascompte, J. & Jordano, P. Mutualistic Networks. 70 (Princeton University Press, New Jersey, 2014).

    • Google Scholar
  • 17.

    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

  • 18.

    Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning Gaese, K. & Schleuning, M. Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc. R. Soc. B 283, 20152444 (2016).

  • 19.

    Bender, I. M. A. et al. Morphological trait matching shapes plant–frugivore networks across the Andes. Ecography 41, 1910–1919 (2018).

    • Article
    • Google Scholar
  • 20.

    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).

    • Article
    • Google Scholar
  • 21.

    Donoso, I., Schleuning, M., García, D. & Fründ, J. Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proc. R. Soc. B 284, 20162664 (2017).

    • Article
    • Google Scholar
  • 22.

    Pérez-Méndez, N., Jordano, P. & Valido, A. Persisting in defaunated landscapes: reduced plant population connectivity after seed dispersal collapse. J. Ecol. 106, 936–947 (2017).

    • Article
    • Google Scholar
  • 23.

    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    • Article
    • Google Scholar
  • 24.

    Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).

  • 25.

    Naniwadekar, R., Chaplod, S., Datta, A., Rathore, A. & Sridhar, H. Large frugivores matter: Insights from network and seed dispersal effectiveness approaches. J. Anim. Ecol. 88, 1250–1262 (2019).

    • Article
    • Google Scholar
  • 26.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2014).

    • Article
    • Google Scholar
  • 27.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

  • 28.

    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).

  • 29.

    Wenny, D. G., Sekercioglu, C. H., Cordeiro, N. J., Rogers, H. S. & Kelly, D. Seed Dispersal by Fruit-Eating Birds in Why Birds Matter: Avian Ecological Function and Ecosystem Services. (The University of Chicago Press, London, 2016).

    • Google Scholar
  • 30.

    Bagchi, R. et al. Defaunation increases the spatial clustering of lowland Western Amazonian tree communities. J. Ecol. 106, 1470–1482 (2018).

    • Article
    • Google Scholar
  • 31.

    Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).

    • Article
    • Google Scholar
  • 32.

    García, C. & Borda-de-Água, L. Extended dispersal kernels in a changing world: insights from statistics of extremes. J. Ecol. 105, 63–74 (2016).

    • Article
    • Google Scholar
  • 33.

    Schleuning, M. et al. Trait-based assessments of climate-change impacts on interacting species. Trends Ecol. Evol. 35, 319–328 (2020).

    • Article
    • Google Scholar
  • 34.

    Jordano, P., Garcia, C., Godoy, J. A. & Garcia-Castano, J. L. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).

  • 35.

    Morales, J. M., García, D., Martínez, D., Rodriguez-Pérez, J. & Herrera, J. M. Frugivore behavioural details matter for seed dispersal: a multi-species model for cantabrian thrushes and trees. PLoS ONE 8, e65216–12 (2013).

  • 36.

    Rehm, E., Fricke, E., Bender, J., Savidge, J. & Rogers, H. Animal movement drives variation in seed dispersal distance in a plant–animal network. Proc. R. Soc. B 286, 20182007 (2019).

  • 37.

    Sorensen, M. C., Schleuning, M., Donoso, I., Neuschulz, E. L. & Mueller, T. Community-wide seed dispersal distances peak at low levels of specialisation in size-structured networks. Preprint at https://doi.org/10.1101/2020.02.23.958454 (2020).

  • 38.

    Spiegel, O. & Nathan, R. Incorporating dispersal distance into the disperser effectiveness framework: frugivorous birds provide complementary dispersal to plants in a patchy environment. Ecol. Lett. 10, 718–728 (2007).

    • Article
    • Google Scholar
  • 39.

    García, D., Donoso, I. & Rodriguez-Pérez, J. Frugivore biodiversity and complementarity in interaction networks enhance landscape‐scale seed dispersal function. Funct. Ecol. 32, 2742–2752 (2018).

    • Article
    • Google Scholar
  • 40.

    Blüthgen, N. & Klein, A. M. Functional complementarity and specialisation: the role of biodiversity in plant-pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).

    • Article
    • Google Scholar
  • 41.

    Peralta, G., Frost, C. M., Rand, T. A., Didham, R. K. & Tylianakis, J. M. Complementarity and redundancy of interactions enhance attack rates and spatial stability in host–parasitoid food webs. Ecology 95, 1888–1896 (2014).

    • Article
    • Google Scholar
  • 42.

    Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).

    • Article
    • Google Scholar
  • 43.

    Muñoz, M. C., Schaefer, H. M., Böhning Gaese, K. & Schleuning, M. Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. Oikos 126, 823–832 (2016).

    • Article
    • Google Scholar
  • 44.

    Dugger, P. J. et al. Seed-dispersal networks are more specialized in the Neotropics than in the Afrotropics. Glob. Ecol. Biogeogr. 28, 248–261 (2019).

    • Article
    • Google Scholar
  • 45.

    Morais-Vidal, M. et al. Predicting the non‐linear collapse of plant–frugivore networks due to habitat loss. Ecography 42, 1765–1776 (2019).

    • Article
    • Google Scholar
  • 46.

    Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).

    • Article
    • Google Scholar
  • 47.

    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2017).

    • Article
    • Google Scholar
  • 48.

    Schleuning, M. et al. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Bio. 22, 1925–1931 (2012).

  • 49.

    Bender, I. M. A. et al. Functionally specialised birds respond flexibly to seasonal changes in fruit availability. J. Anim. Ecol. 86, 800–811 (2017).

    • Article
    • Google Scholar
  • 50.

    Kelly, E. L. A. et al. Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes. Oecologia 182, 1151–1163 (2016).

  • 51.

    Timóteo, S., Ramos, J. A., Vaughan, I. P. & Memmott, J. High resilience of seed dispersal webs highlighted by the experimental removal of the dominant disperser. Curr. Biol. 26, 910–915 (2016).

  • 52.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    • Article
    • Google Scholar
  • 53.

    Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).

    • Article
    • Google Scholar
  • 54.

    Stork, N. E. et al. Vulnerability and resilience of tropical forest species to land-use change. Conserv. Biol. 23, 1438–1447 (2009).

    • Article
    • Google Scholar
  • 55.

    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).

  • 56.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

  • 57.

    Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Defaunation leads to interaction deficits, not interaction compensation, in an island seed dispersal network. Glob. Change Biol. 24, e190–e200 (2017).

    • Article
    • Google Scholar
  • 58.

    Marjakangas, E. L. et al. Fragmented tropical forests lose mutualistic plant–animal interactions. Divers. Distrib. 17, 503–515 (2019).

    • Google Scholar
  • 59.

    Ovaskainen, O. et al. Joint species movement modeling: how do traits influence movements? Ecology 100, e02622 (2019).

  • 60.

    Morán López, T. et al. Can network metrics predict vulnerability and species roles in bird‐dispersed plant communities? Not without behaviour. Ecol. Lett. 8, 8–11 (2019).

    • Google Scholar
  • 61.

    Terborgh, J. The big things that run the world – a sequel to E. O. Wilson. Conserv. Biol. 2, 402–403 (1988).

    • Article
    • Google Scholar
  • 62.

    Dirzo, R. & Miranda, A. Contemporary neotropical defaunation and forest structure, function, and diversity – a sequel to John Terborgh. Conserv. Biol. 4, 444–447 (1990).

    • Article
    • Google Scholar
  • 63.

    Bender, I. M. A. et al. Morphological trait matching shapes plant–frugivore networks across the Andes [Dataset]. Ecography https://doi.org/10.12761/SGN.2018.10237 (2018).

  • 64.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    • Article
    • Google Scholar
  • 65.

    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).

    • Article
    • Google Scholar
  • 66.

    Donoso, I., García, D., Rodriguez-Pérez, J. & Martínez, D. Incorporating seed fate into plant-frugivore networks increases interaction diversity across plant regeneration stages. Oikos 125, 1762–1771 (2016).

    • Article
    • Google Scholar
  • 67.

    Robbins, C. T. Food Intake Regulation in Wildlife Feeding and Nutrition. (Academic Press, London, 1983).

    • Google Scholar
  • 68.

    Levey, D. J. Methods of seed processing by birds and seed deposition patterns. In Frugivoresand Seed Dispersal 147–158 (Springer, Dordrecht, 1986).

  • 69.

    Uriarte, M. et al. Disentangling the drivers of reduced long-distance seed dispersal by birds in an experimentally fragmented landscape. Ecology 92, 924–937 (2011).

    • Article
    • Google Scholar
  • 70.

    Gasperin, G. & Pizo, M. A. Passage time of seeds through the guts of frugivorous birds, a first assessment in Brazil. Rev. Bras. Ornitol. 20, 48–51 (2012).

    • Google Scholar
  • 71.

    Schurr, F. M. Long-distance seed dispersal. Ann. Plant Rev. 38, 204–237 (2009).

    • ADS
    • Google Scholar
  • 72.

    Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Allometric scaling of long-distance seed dispersal by migratory birds. Am. Nat. 181, 649–662 (2013).

    • Article
    • Google Scholar
  • 73.

    Tucker, V. A. Energetics of Natural Avian Flight in Avian Energetics. pp. 298–333. (Nuttal Ornithological Club, Cambridge, MA, USA, 1974).

    • Google Scholar
  • 74.

    Guttal, V., Bartumeus, F., Hartvigsen, G. & Nevai, A. L. Retention time variability as a mechanism for animal mediated long-distance dispersal. PLoS ONE 6, e28447–10 (2011).

  • 75.

    Bruderer, B. & Boldt, A. Flight characteristics of birds: I. Radar measurements of speeds. Ibis 143, 178–204 (2001).

    • Article
    • Google Scholar
  • 76.

    Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P. & Hellgren, O. Flight speeds among bird species: allometric and phylogenetic effects. PLoS Biol. 5, e197 (2007).

  • 77.

    R Core Team, R. A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017).

    • Google Scholar

  • Source: Ecology - nature.com

    The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs

    The bits of wire that can devastate lion populations