in

Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age

  • 1.

    Stebegg, M. et al. Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nature Communications 10 (2019).

  • 2.

    Biagi, E. et al. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS One 5, e10667 (2010).

  • 3.

    Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology 9, 313–323 (2009).

  • 4.

    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences 108, 4586–4591 (2010).

  • 5.

    Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochemical Journal 474, 1823–1836 (2017).

  • 6.

    Ravinder Nagpal et al. Gut microbiome and aging: Physiological and mechanistic insights. NHA 4, 267–285 (2018).

  • 7.

    Arrieta, M.-C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M. & Finlay, B. The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology 5 (2014).

  • 8.

    Rinninella, E. et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 7, 14 (2019).

  • 9.

    Lim, M. Y., Song, E.-J., Kang, K. S. & Nam, Y.-D. Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience (2019).

  • 10.

    Fransen, F. et al. Aged Gut Microbiota Contributes to Systemical Inflammaging after Transfer to Germ-Free Mice. Frontiers in Immunology 8 (2017).

  • 11.

    Thevaranjan, N. et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host & Microbe 21, 455–466.e4 (2017).

  • 12.

    Obata, F., Fons, C. O. & Gould, A. P. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nature Communications 9 (2018).

  • 13.

    Westfall, S., Lomis, N. & Prakash, S. Longevity extension in Drosophila through gut-brain communication. Scientific Reports 8 (2018).

  • 14.

    Smith, P. et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife 6 (2017).

  • 15.

    Sonowal, R. et al. Indoles from commensal bacteria extend healthspan. Proceedings of the National Academy of Sciences 114, E7506–E7515 (2017).

  • 16.

    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature. 486(7402), 207–214, https://doi.org/10.1038/nature11234 (2012).

  • 17.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

  • 18.

    Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology 14, 508–522 (2016).

  • 19.

    Gill, S. R. et al. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 312, 1355–1359 (2006).

  • 20.

    Heintz-Buschart, A. & Wilmes, P. Human Gut Microbiome: Function Matters. Trends in Microbiology 26, 563–574 (2018).

  • 21.

    Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ j831, https://doi.org/10.1136/bmj.j831 (2017).

  • 22.

    Mason, M. R., Nagaraja, H. N., Camerlengo, T., Joshi, V. & Kumar, P. S. Deep Sequencing Identifies Ethnicity-Specific Bacterial Signatures in the Oral Microbiome. PLoS One 8, e77287 (2013).

  • 23.

    Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics 18, 690–699 (2017).

  • 24.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

  • 25.

    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiology 16 (2016).

  • 26.

    Turnbaugh, P. J. et al. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine 1, 6ra14–6ra14 (2009).

  • 27.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2013).

  • 28.

    Tyakht, A. V. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nature Communications 4 (2013).

  • 29.

    Allendorf, K. Going Nuclear? Family Structure and Young Women’s Health in India, 1992–2006. Demography 50, 853–880 (2012).

    • Article
    • Google Scholar
  • 30.

    Garceau, A., Wideroff, L., McNeel, T., Dunn, M. & Graubard, B. I. Population Estimates of Extended Family Structure and Size. Public Health Genomics 11, 331–342 (2008).

    • Article
    • Google Scholar
  • 31.

    Kumbhare, S. V. et al. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children. Scientific Reports 7 (2017).

  • 32.

    Bhute, S. S. et al. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology 8 (2017).

  • 33.

    Patil, D. P. et al. Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of Biosciences 37, 647–657 (2012).

  • 34.

    Bodkhe, R. et al. Comparison of Small Gut and Whole Gut Microbiota of First-Degree Relatives With Adult Celiac Disease Patients and Controls. Frontiers in Microbiology 10 (2019).

  • 35.

    Chaudhari, D. et al. Understanding the association between the human gut, oral and skin microbiome and the Ayurvedic concept of prakriti. Journal of Biosciences 44 (2019).

  • 36.

    Das, B. et al. Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas. Scientific Reports 8 (2018).

  • 37.

    Dehingia, M. et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific Reports 5 (2015).

  • 38.

    De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 107, 14691–14696 (2010).

  • 39.

    Bhute, S. et al. Molecular Characterization and Meta-Analysis of Gut Microbial Communities Illustrate Enrichment of Prevotella and Megasphaera in Indian Subjects. Frontiers in Microbiology 7 (2016).

  • 40.

    Kulkarni, A. S., Kumbhare, S. V., Dhotre, D. P. & Shouche, Y. S. Mining the Core Gut Microbiome from a Sample Indian Population. Indian Journal of Microbiology 59, 90–95 (2018).

  • 41.

    Chen, T. et al. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports 7 (2017).

  • 42.

    Gomez, A. et al. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host & Microbe 22, 269–278.e3 (2017).

  • 43.

    Gao, L. et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein & Cell 9, 488–500 (2018).

  • 44.

    Takeshita, T. et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Scientific Reports 6 (2016).

  • 45.

    Johansson, I., Witkowska, E., Kaveh, B., Lif Holgerson, P. & Tanner, A. C. R. The Microbiome in Populations with a Low and High Prevalence of Caries. Journal of Dental Research 95, 80–86 (2015).

  • 46.

    Chen, H. & Jiang, W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Frontiers in Microbiology 5 (2014).

  • 47.

    Zhao, H. et al. Variations in oral microbiota associated with oral cancer. Scientific Reports 7 (2017).

  • 48.

    Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal Stability of the Human Skin Microbiome. Cell 165, 854–866 (2016).

  • 49.

    Findley, K. & Grice, E. A. The Skin Microbiome: A Focus on Pathogens and Their Association with Skin Disease. PLoS Pathogens 10, e1004436 (2014).

  • 50.

    Schommer, N. N. & Gallo, R. L. Structure and function of the human skin microbiome. Trends in Microbiology 21, 660–668 (2013).

  • 51.

    Klymiuk, I., Bambach, I., Patra, V., Trajanoski, S. & Wolf, P. 16S Based Microbiome Analysis from Healthy Subjects’ Skin Swabs Stored for Different Storage Periods Reveal Phylum to Genus Level Changes. Frontiers in Microbiology 7 (2016).

  • 52.

    Castelino, M. et al. Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiology 17 (2017).

  • 53.

    Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

  • 54.

    Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165, 1332–1345 (2016).

  • 55.

    Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 58, 2716–2720 (2008).

  • 56.

    Xie, H. et al. Intergeneric Communication in Dental Plaque Biofilms. Journal of Bacteriology 182, 7067–7069 (2000).

  • 57.

    Kreth, J., Merritt, J. & Qi, F. Bacterial and Host Interactions of Oral Streptococci. DNA and Cell Biology 28, 397–403 (2009).

  • 58.

    Singh, R. K. et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine 15 (2017).

  • 59.

    Buford, T. W. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5 (2017).

  • 60.

    Nicoletti, C. Age-associated changes of the intestinal epithelial barrier: local and systemic implications. Expert Review of Gastroenterology & Hepatology 9, 1467–1469 (2015).

  • 61.

    Man, A. L. et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science 129, 515–527 (2015).

  • 62.

    Tandon, D. et al. A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS One 13, e0195643 (2018).

  • 63.

    Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology 12, 661–672 (2014).

  • 64.

    Scott, K. P., Martin, J. C., Campbell, G., Mayer, C.-D. & Flint, H. J. Whole-Genome Transcription Profiling Reveals Genes Up-Regulated by Growth on Fucose in the Human Gut Bacterium “Roseburia inulinivorans”. Journal of Bacteriology 188, 4340–4349 (2006).

  • 65.

    Shetty, S. A., Marathe, N. P., Lanjekar, V., Ranade, D. & Shouche, Y. S. Comparative Genome Analysis of Megasphaera sp. Reveals Niche Specialization and Its Potential Role in the Human Gut. PLoS One 8, e79353 (2013).

  • 66.

    Dimitriu, P. A. et al. New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. mBio 10 (2019).

  • 67.

    Guinane, C. M. & Cotter, P. D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology 6, 295–308 (2013).

  • 68.

    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health & Disease 26 (2015).

  • 69.

    Zhang, Y.-J. et al. Impacts of Gut Bacteria on Human Health and Diseases. International Journal of Molecular Sciences 16, 7493–7519 (2015).

  • 70.

    Belkaid, Y. & Hand, T. W. Role of the Microbiota in Immunity and Inflammation. Cell 157, 121–141 (2014).

  • 71.

    Afra, K., Laupland, K., Leal, J., Lloyd, T. & Gregson, D. Incidence, risk factors, and outcomes of Fusobacterium species bacteremia. BMC Infectious Diseases 13 (2013).

  • 72.

    Woodmansey, E. J., McMurdo, M. E. T., Macfarlane, G. T. & Macfarlane, S. Comparison of Compositions and Metabolic Activities of Fecal Microbiotas in Young Adults and in Antibiotic-Treated and Non-Antibiotic-Treated Elderly Subjects. Applied and Environmental Microbiology 70, 6113–6122 (2004).

  • 73.

    Singh, P. & Manning, S. D. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections. Annals of Epidemiology 26, 380–385 (2016).

  • 74.

    Andreescu, C. et al. Age influence on periodontal tissues: a histological study. Romanian Journal of Morphology and Embryology 54, 811–815 (2013).

  • 75.

    Wang, Y. & Kasper, L. H. The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity 38, 1–12 (2014).

  • 76.

    Upadhyaya, S. & Banerjee, G. Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes 6, 85–92 (2015).

  • 77.

    Hartstra, A. V., Bouter, K. E. C., Bäckhed, F. & Nieuwdorp, M. Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care 38, 159–165 (2014).

  • 78.

    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).

  • 79.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

  • 80.

    Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

  • 81.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

  • 82.

    McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217 (2013).

  • 83.

    Taiyun, W. & Viliam, S. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available at, https://github.com/taiyun/corrplot (2017).

  • 84.

    Oksanen, J. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. Available at, http://cran.r-project.org (2013).

  • 85.

    Lahti, L. et al. Tools for microbiome analysis in R. Version 1.5.23. 2017; Available at, http://microbiome.github.com/microbiome (2017).

  • 86.

    Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721 (2010).

  • 87.

    Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 169 (2015).

  • 88.

    Suryavanshi, M. V. et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports 6 (2016).


  • Source: Ecology - nature.com

    Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming

    Discerning the texture of urban resilience